首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A thermosensitive E. coli mutant is described which has at least two defects in vitro: a thermolabile initiation factor IF3 activity and a modified L-phenylalanine: tRNAPhe ligase (EC 6.1.1.20) activity. These two defects cotransduce and are located near 38 min on the new E. coli map. Thermoresistant revertants showing in vitro reversion for one defect also revert in vitro for the other defect. The thermosensitive mutation is recessive to its wild type allele, and in vitro analysis of wild type/mutant heterodiploïds also show reversion for both defects.  相似文献   

2.
Initiation of translation in prokaryotes requires the participation of at least three soluble proteins: the initiation factors IF1, IF2 and IF3. Initiation factor 2, which is one of the largest proteins involved in translation (97.3 kDa) has been shown to stimulate in vitro the binding of fMet-tRNA(fMet) to the 30S ribosomal subunit. After formation of 70S translation initiation complex, IF2 is believed to participate in GTP hydrolysis, thereby promoting its own release. Here we review evidence which indicates the functional importance of the different structural domains of IF2, emphasizing new information obtained by in vivo experiments.  相似文献   

3.
For the production of large quantities of E coli initiation factor IF2 we have constructed an improved overexpression system. The gene infB was cloned into the thermo-inducible runaway plasmid pCP40 [1] and subsequently transformed into the E coli strain C600[pcI857]. In this system the expression of infB is under the control of the strong promoter lambda PL and the cells carry the plasmid pcI857, which contains a thermosensible lambda cI repressor. Overexpression of IF2, which is approximately 30 times higher than the expression in wild-type-cells, is induced at 42 degrees C and continues for 2 h at 37 degrees C. From these cells pure and active IF2 was obtained using a novel 3-step FPLC-procedure consisting of ion-exchange liquid chromatography on Q-sepharose HP, MonoQ and MonoS. In approximately 8 h, 5 mg of pure and active IF2 can be obtained from 10 g overproducing cells. This corresponds to 5 mg of IF2 per litre of medium. The purification was monitored by Western immunoblotting and the activity of the purified factor was tested by measuring the stimulation of binding of the initiator fMet-tRNA(Met)f to 70S ribosomes in the presence of GTP and poly(A,U,G) as messenger RNA. Compared with previous methods our purification procedure avoids the use of materials such as DEAE-cellulose and phosphocellulose which have relatively poor flow rates. In addition to the higher flow capacity of Q-sepharose HP, this new matrix can be loaded with an S30 supernatant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The interaction of E.coli initiation factor IF2 with formylmethionyl-tRNAfMet has been studied by measuring the inhibition by IF2 of the spontaneous deaminoacylation of the charged tRNA. We find that IF2 protects fMet-tRNAfMet against spontaneous deacylation. The formylation is an absolute requirement for this protection and no effect of GTP was found. The association constant for IF2 binding to fMet-tRNAfMet at 37°C and physiological ionic conditions was estimated at about 106 M?1.  相似文献   

5.
We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2 is required for optimal interaction of the factor with both 30S and 50S ribosomal subunits. A structural model for the interaction of IF2 with the ribosome is presented.  相似文献   

6.
Initiation Factor 1 (IF1) is required for the initiation of translation in Escherichia coli. However, the precise function of IF1 remains unknown. Current evidence suggests that IF1 is an RNA-binding protein that sits in the A site of the decoding region of 16 S rRNA. IF1 binding to 30 S subunits changes the reactivity of nucleotides in the A site to chemical probes. The N1 position of A1408 is enhanced, while the N1 positions of A1492 and A1493 are protected from reactivity with dimethyl sulfate (DMS). The N1-N2 positions of G530 are also protected from reactivity with kethoxal. Quantitative footprinting experiments show that the dissociation constant for IF1 binding to the 30 S subunit is 0.9 microM and that IF1 also alters the reactivity of a subset of Class III sites that are protected by tRNA, 50 S subunits, or aminoglycoside antibiotics. IF1 enhances the reactivity of the N1 position of A1413, A908, and A909 to DMS and the N1-N2 positions of G1487 to kethoxal. To characterize this RNA-protein interaction, several ribosomal mutants in the decoding region RNA were created, and IF1 binding to wild-type and mutant 30 S subunits was monitored by chemical modification and primer extension with allele-specific primers. The mutations C1407U, A1408G, A1492G, or A1493G disrupt IF1 binding to 30 S subunits, whereas the mutations G530A, U1406A, U1406G, G1491U, U1495A, U1495C, or U1495G had little effect on IF1 binding. Disruption of IF1 binding correlates with the deleterious phenotypic effects of certain mutations. IF1 binding to the A site of the 30 S subunit may modulate subunit association and the fidelity of tRNA selection in the P site through conformational changes in the 16 S rRNA.  相似文献   

7.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

8.
The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes.  相似文献   

9.
10.
The initiation of protein translation in bacteria requires in addition to mRNA, fMet-tRNA, and ribosomal subunits three protein factors, the initiation factor 1 (IF1), initiation factor 2 (IF2), and initiation factor 3 (IF3). The genes coding for IF1 and IF3 from Thermus thermophilus have been identified and cloned into pET expression vector and were expressed as soluble proteins in Escherichia coli. IF1 was purified by a DEAE-cellulose chromatography, followed by heat denaturation, chromatography on Hydroxylapatit, and gel permeation chromatography using Sephacryl 200HR. For the purification of IF3, a heat denaturation step is followed by anion-exchange chromatography on Q-Sepharose FF and gel permeation chromatography on Sephacryl 200HR. Using these procedures we obtained chromatographically pure and biologically active preparations of both T. thermophilus IF1 and IF3.  相似文献   

11.
Mammalian mitochondrial ribosomes are distinguished from their bacterial and eukaryotic-cytoplasmic counterparts, as well as from mitochondrial ribosomes of lower eukaryotes, by their physical and chemical properties and their high protein content. However, they do share more functional homologies with bacterial ribosomes than with cytoplasmic ribosomes. To search for possible homologies between mammalian mitochondrial ribosomes and bacterial ribosomes at the level of initiation factor binding sites, we studied the interaction of Escherichia coli initiation factor 3 (IF3) with bovine mitochondrial ribosomes. Bacterial IF3 was found to bind to the small subunit of bovine mitochondrial ribosomes with an affinity of the same order of magnitude as that for bacterial ribosomes, suggesting that most of the functional groups contributing to the IF3 binding site in bacterial ribosomes are conserved in mitochondrial ribosomes. Increasing ionic strength affects binding to both ribosomes similarly and suggests a large electrostatic contribution to the reaction. Furthermore, bacterial IF3 inhibits the Mg2+-dependent association of mitochondrial ribosomal subunits, suggesting that the bacterial IF3 binds to mitochondrial small subunits in a functional way.  相似文献   

12.
13.
14.
Summary A set of transducing phages carrying varying lengths of the E. coli chromosome around the structural gene for initiation factor IF3 (infC) was derived from p2 which is known to cary, besides infC, the structural genes for the subunit of phenylalanyl-tRNA synthetase (pheS), the subunit of phenylalanyl-tRNA synthetase (phetT) and the structural gene for threonyl-tRNA synthetase (thrS). The E. coli coding content of these derived phages was analysed by genetic complementation of a set of mutants and by SDS-polyacrylamide gel analysis of the proteins synthesized in UV irradiated cells infected with these phages. The segregation pattern of the different genes among these derived phages indicates that the order of the genes is pheT-pheS-P12-(infC, thrS) where infC is probably between P12 and thrS. P12 is the structural gene of a 12,000 molecular weight unidentified protein.Abbreviations PRS (EC 6.1.1.20) phenylalanyl-tRNA synthetase - TRS (EC 6.1.1.3) threonyl-tRNA synthetase - IF3 Initiation factor IF3 - SDS Sodium dodecyl sulfate - PPR pyrophosphate resistant - PPS pyrophosphate sensitive  相似文献   

15.
The nucleotide sequence of a 1.26-kb pair DNA fragment containing the structural gene for Escherichia coli initiation factor IF3 has been determined. An open reading frame of 540 nucleotides is found at the position predicted by genetic studies. The amino-acid sequence deduced from the DNA sequence accounts for a molecular weight 20 530. The important feature of the coding DNA sequence is the presence of AUU as the translational initiator codon. It is 11 bases downstream of the center of a GGAGG sequence, which can strongly pair with the sequence CCUCC near the 3' terminus of 16S rRNA. The primary DNA sequence in the region of the AUU initiator codon and its role in compensating a reduced codon-anticodon interaction in initiation complex formation are discussed.  相似文献   

16.
Initiation factor IF3 is responsible for the accuracy of translation initiation in bacteria, by destabilizing complexes involving non-initiator tRNA and/or nonstart codons. This proofreading is performed on the 30S subunit to which IF3 binds selectively. IF3 has an unusual architecture, with two globular domains connected by a mobile, positively charged linker. Here, we have investigated the function of this flexible tether by probing its conformation when IF3 is bound to the ribosomal RNA. Using site-directed mutagenesis of the linker region, we have also selectively modified its length, its flexibility and its chemical composition. The function of the mutant genes was assayed in vivo, and the structural and biochemical properties of some of the corresponding variant proteins were characterized in vitro. The two isolated domains of IF3 were also co-expressed in order to test the requirement for their covalent attachment. The results indicate that the physical link between the two domains of IF3 is essential for the function of this protein, but that the exact length and chemical composition of the linker can be varied to a large extent. A model is presented in which the extended linker would act as a 'strap', triggering a conformational change in the 30S subunit, which would then ensure initiator tRNA selection.  相似文献   

17.
The gene for initiation factor IF2, infB, represents one of the few examples in Escherichia coli of genes encoding two protein products in vivo. In a previous work, our group showed that both forms of IF2 (alpha and beta) are closely related and may arise from two independent translational events on infB mRNA. Unambiguous mapping and rigorous determination of the nature of the initiation triplet for IF2 beta, the smaller form of IF2, is critical for future mutagenesis of this codon, required for investigating the biological importance of both IF2 alpha and IF2 beta. Three types of experiments were carried out. First, a 77-bp deletion was created at the beginning of the structural gene leading to premature termination of IF2 alpha synthesis. Under these conditions, IF2 beta is still formed. Second, various Bal31 digests of infB containing the 77-bp deletion were fused to lacZ. Any synthesis of a fused protein with beta-galactosidase activity should reflect the occurrence of an initiation event on the messenger corresponding to this DNA segment. It was consequently possible to locate the IF2 beta initiation site within an 18-base region containing an in-phase GUG codon. Third, to avoid any artefactual reinitiation event possibly occurring under our experimental conditions, we fused to lacZ an infB fragment devoid of IF2 alpha start sequences but containing genetic information for this 18-base region. A hybrid protein with beta-galactosidase activity was synthesized. Moreover, its NH2-terminal amino acid sequence coincided with that of IF2 beta, demonstrating that GUG, located 471 bases downstream from the IF2 alpha external start codon, is the internal start codon for the shorter form of IF2.  相似文献   

18.
Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.  相似文献   

19.
We have isolated genetic suppressors of mutations in the recJ gene of Escherichia coli in a locus we term srjA. These srjA mutations cause partial to complete alleviation of the recombination and UV repair defects conferred by recJ153 and recJ154 mutations in a recBC sbcA genetic background. The srjA gene was mapped to 37.5 min on the E. coli chromosome. This chromosomal region from the srjA5 strain was cloned into a plasmid vector and was shown to confer recJ suppression in a dominant fashion. Mutational analysis of this plasmid mapped srjA to the infC gene encoding translation initiation factor 3 (IF3). Sequence analysis revealed that all three srjA alleles cause amino acid substitutions of IF3. Suppression of recJ was shown to be allele specific: recJ153 and recJ154 mutations were suppressible, but recJ77 and the insertion allele recJ284::Tn10 were not. In addition, growth medium-conditional lethality was observed for strains carrying srjA mutations with the nonsuppressible recJ alleles. When introduced into recJ+ strains, srjA mutations conferred hyperrecombinational and hyper-UVr phenotypes. An interesting implication of these genetic properties of srjA suppression is that IF3 may regulate the expression of recJ and perhaps other recombination genes and hence may regulate the recombinational capacity of the cell.  相似文献   

20.
Characterization of translational initiation sites in E. coli.   总被引:138,自引:34,他引:104       下载免费PDF全文
We characterize the Shine and Dalgarno sequence of 124 known gene beginnings. This information is used to make "rules" which help distinguish gene beginning from other sites in a library of over 78,000 bases of mRNA. Gene beginnings are found to have information besides the initiation codon and Shine and Dalgarno sequence which can be used to make better "rules".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号