首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
Cadmium-induced oxidative damage in rice leaves is reduced by polyamines   总被引:4,自引:0,他引:4  
The protective effect of polyamines against Cd toxicity of rice (Oryza sativa) leaves was investigated. Cd toxicity to rice leaves was determined by the decrease in protein content. CdCl2 treatment results in (1) increased Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in ascorbic acid (ASC) and reduced glutathione (GSH) contents, and (5) increase in the activities of antioxidative enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). Spermidine (Spd) and spermine (Spm), but not putrescine (Put), were effective in reducing CdCl2-induced toxicity. Spd and Spm prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of ASC and GSH, and increase in the activities of antioxidative enzymes. Spd and Spm pretreatments resulted in a decrease in Cd content when compared with H2O pretreatment, indicating that Spd and Spm may reduce the uptake of Cd. Results of the present study suggest that Spd and Spm are able to protect Cd-induced oxidative damage and this protection is most likely related to the avoidance of H2O2 generation and the reduction of Cd uptake.  相似文献   

2.
The production of H2O2 in detached rice leaves of Taichung Native 1 (TN1) caused by CdCl2 was investigated. CdCl2 treatment resulted in H2O2 production in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase (NOX), prevented CdCl2-induced H2O2 production, suggesting that NOX is a H2O2-genearating enzyme in CdCl2-treated detached rice leaves. Phosphatidylinositol 3-kinase inhibitors wortmanin (WM) or LY294002 (LY) inhibited CdCl2-inducted H2O2 production in detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY, suggesting that phosphatidylinositol 3-phosphate is required for Cd-induced H2O2 production in detached rice leaves. Nitric oxide donor sodium nitroprusside (SNP) was also effective in reducing CdCl2-inducing accumulation of H2O2 in detached rice leaves. Cd toxicity was judged by the decrease in chlorophyll content. The results indicated that DPI, IMD, WM, LY, and SNP were able to reduce Cd-induced toxicity of detached rice leaves. Twelve-day-old TN1 and Tainung 67 (TNG67) rice seedlings were treated with or without CdCl2. In terms of Cd toxicity (leaf chlorosis), it was observed that rice seedlings of cultivar TN1 are Cd-sensitive and those of cultivar TNG67 are Cd-tolerant. On treatment with CdCl2, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Prior exposure of TN1 seedlings to 45oC for 3 h resulted in a reduction of H2O2 accumulation, as well as Cd tolerance of TN1 seedlings treated with CdCl2. The results strongly suggest that Cd toxicity of detached leaves and leaves attached to rice seedlings are due to H2O2 accumulation.  相似文献   

3.
Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex. Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage.  相似文献   

4.
Cadmium toxicity of rice leaves is mediated through lipid peroxidation   总被引:8,自引:0,他引:8  
Oxidative stress, in relation to toxicity of detached rice leaves,caused by excess cadmium was investigated. Cd content inCdCl2-treated detached rice leaves increased with increasingdurationof incubation in the light. Cd toxicity was followed by measuring the decreasein chlorophyll and protein. CdCl2 was effective in inducing toxicityand increasing lipid peroxidation of detached rice leaves under both light anddark conditions. These effects were also observed in rice leaves treated withCdSO4, indicating that the toxicity was indeed attributed to cadmiumions. Superoxide dismutase (SOD), ascorbate peroxidase (APOD), and glutathionereductase (GR) activities were reduced by excess CdCl2 in the light.The changes in catalase and peroxidase activities were observed inCdCl2-treated rice leaves after the occurrence of toxicity in thelight. Free radical scavengers reduced CdCl2-induced toxicity and atthe same time reduced CdCl2-induced lipid peroxidation and restoredCdCl2-decreased activities of SOD, APOD, and GR in the light. Metalchelators (2,2-bipyridine and 1,10-phenanthroline) reducedCdCl2 toxicity in rice leaves in the light. The reduction ofCdCl2 toxicity by 2,2-bipyridine (BP) is closely associatedwith a decrease in lipid peroxidation and an increase in activities ofantioxidative enzymes. Furthermore, BP-reduced toxicity of detached riceleaves,induced by CdCl2, was reversed by adding Fe2+ orCu2+, but not by Mn2+ or Mg2+.Reduction of CdCl2 toxicity by BP is most likely mediated throughchelation of iron. It seems that toxicity induced by CdCl2 mayrequire the participation of iron.  相似文献   

5.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

6.
The protective effect of β-estradiol (E) application against heavy metal (HM) toxicity in lentil (Lens culinaris) seedlings was investigated. Seeds were treated with distilled water (control) or aqueous solutions of 100 μM CdCl2, 200 μM CuCl2 and 1 μM E singly or in combinations (1 μM E+100 μM CdCl2 and 1 μM E+200 μM CuCl2). HM treatments resulted in increase in the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), guaicol peroxidase and ascorbate peroxidase. In a similar manner, Cd and Cu affected significantly oxidative injury indicators measured as electrolyte leakage (electrical conductivity of germination medium), lipoxygenase (LOX) activity and contents of malondialdehyde (MDA; lipoperoxidation marker), carbonyl groups (protein oxidation marker) and hydrogen peroxide (a reactive oxygen species). However, E was effective in reducing HM-induced toxicity. The steroid (1) alleviated HM-induced increase in the electrolyte leakage, LOX activity and contents of MDA, carbonyl and H2O2 and (2) improved the activities of SOD and CAT, but not the peroxidase ones, as compared to treatments with HM singly. In addition, E application prevented HM-induced decrease in dry weight production, but did not reduce the accumulation of Cd and Cu in tissues. Results of the present study suggest that E is able to protect lentil from HM-induced oxidative damage most likely by avoidance of H2O2 generation and improving antioxidative enzyme activities and, thereby, decreasing oxidative stress injury, but not by reducing Cd and Cu uptake.  相似文献   

7.
Jie Xiong  Lingyao An  Han Lu  Cheng Zhu 《Planta》2009,230(4):755-765
To study the mechanisms of exogenous NO contribution to alleviate the cadmium (Cd) toxicity in rice (Oryza sativa), rice plantlets subjected to 0.2-mM CdCl2 exposure were treated with different concentrations of sodium nitroprusside (SNP, a NO donor), and Cd toxicity was evaluated by the decreases in plant length, biomass production and chlorophyll content. The results indicated that 0.1 mM SNP alleviated Cd toxicity most obviously. Atomic absorption spectrometry and fluorescence localization showed that treatment with 0.1 mM SNP decreased Cd accumulation in both cell walls and soluble fraction of leaves, although treatment with 0.1 mM SNP increased Cd accumulation in the cell wall of rice roots obviously. Treatment with 0.1 mM SNP in nutrient solution had little effect on the transpiration rate of rice leaves, but this treatment increased pectin and hemicellulose content and decreased cellulose content significantly in the cell walls of rice roots. Based on these results, we conclude that decreased distribution of Cd in the soluble fraction of leaves and roots and increased distribution of Cd in the cell walls of roots are responsible for the NO-induced increase of Cd tolerance in rice. It seems that exogenous NO enhances Cd tolerance of rice by increasing pectin and hemicellulose content in the cell wall of roots, increasing Cd accumulation in root cell wall and decreasing Cd accumulation in soluble fraction of leaves.  相似文献   

8.
Cadmium (Cd) is readily taken up by the roots of rice seedlings, leading to growth reduction. H2O2 is a constituent of oxidative metabolism and is itself a reactive oxygen species. In this study, the participation of H2O2 in CdCl2-inhibited growth of rice roots was investigated. CdCl2 treatment increased H2O2 production in rice roots. CdCl2 treatment had no effect on the activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase, but inhibited the activity of catalase (CAT) in rice roots. CdCl2-inhibited root growth and -increased H2O2 content were lessened in the presence of diphenyleneiodonium chloride, an inhibitor of H2O2 generating NADPH oxidase. However, this stimulation of root growth in CdCl2-treated seedlings is small (about 5%). Calcium (Ca) is important in many physiological processes in plants. Attempts were also made to determine whether the action of Ca on CdCl2-inhibited growth of rice roots is associated with H2O2. CaCl2 application reduced the production of H2O2, the decrease in CAT activity, and the inhibition of root growth caused by CdCl2. The effects of CaCl2 application could be reversed by exogenous H2O2. Our results indicate that the Cd causes a decline in CAT and to a lower extent a stimulation of NADPH oxidase in rice roots, with the subsequent generation of H2O2, an agent responsible for growth inhibition.  相似文献   

9.
Ascorbic acid (AsA) is the most abundant antioxidant in plants and plays a role in responding to oxidative stress. It has been shown that AsA plays a role in protecting against abiotic stresses. Rice seedlings stressed with 5 μM CdCl2 showed typical Cd toxicity (chlorosis and increase in malondialdehyde content). Rice seedlings pretreated with heat shock at 45°C (HS) or H2O2 under non-HS conditions resulted in the increase in ascorbic acid (AsA) content and the AsA/dehydroascorbate ratio in rice leaves. Exogenous application of AsA or L-galactonone-1, 4-lactone (GalL), a biosynthetic precursor of AsA, under non-HS conditions, which resulted in an increase in AsA content in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with imidazole, an inhibitor of NADPH oxidase, under HS conditions significantly decreased H2O2 and AsA contents in leaves and reduced subsequent Cd tolerance of rice seedlings. We also observed that pretreatment with lycorine, which is known to inhibit the conversion of GalL to AsA, significantly inhibited HS-induced AsA accumulation in leaves and reduced HS-induced protection against subsequent Cd stress of rice stress. It appears that HS- or H2O2-induced protection against subsequent Cd stress of rice seedlings is mediated through AsA. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in AsA. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in AsA content, which in turn protects rice seedlings from oxidative damage caused by Cd.  相似文献   

10.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

11.
We conducted a study to evaluate the interactive effect of NO and H2S on the cadmium (Cd) tolerance of wheat. Cadmium stress considerably reduced total dry weight, chlorophyll a and b content and ratio of Fv/Fm by 36.7, 48.6, 26.7 and 19.5%, respectively, but significantly enhanced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA), endogenous H2S and NO, and the activities of antioxidant enzymes. Exogenously applied sodium nitroprusside (SNP) and sodium hydrosulfide (NaHS), donors of NO and H2S, respectively, enhanced total plant dry matter by 47.8 and 39.1%, chlorophyll a by 92.3 and 61.5%, chlorophyll b content by 29.1 and 27.2%, Fv/Fm ratio by 19.7 and 15.2%, respectively, and the activities of antioxidant enzymes, but lowered oxidative stress and proline content in Cd-stressed wheat plants. NaHS and SNP also considerably limited both the uptake and translocation of Cd, thereby improving the levels of some key mineral nutrients in the plants. Enhanced levels of NO and H2S induced by NaHS were reversed by hypotuarine application, but they were substantially reduced almost to 50% by cPTIO (a NO scavenger) application. Hypotuarine was not effective, but cPTIO was highly effective in reducing the levels of NO and H2S produced by SNP in the roots of Cd-stressed plants. The results showed that interactive effect of NO and H2S can considerably improve plant resistance against Cd toxicity by reducing oxidative stress and uptake of Cd in plants as well as by enhancing antioxidative defence system and uptake of some essential mineral nutrients.  相似文献   

12.
In the present study, we evaluate the protective effect of nitric oxide (NO) against senescence of rice leaves promoted by methyl jasmonate (MJ). Senescence of rice leaves was determined by the decrease of protein content. MJ treatment resulted in (1) induction of leaf senescence, (2) increase in H2O2 and malondialdehyde (MDA) contents, (3) decrease in reduced form glutathione (GSH) and ascorbic acid (AsA) contents, and (4) increase in antioxidative enzyme activities (ascorbate peroxidase, glutathione reductase, peroxidase and catalase). All these MJ effects were reduced by free radical scavengers such as sodium benzoate and GSH. NO donors [N-tert-butyl-α-phenylnitrone (PBN), sodium nitroprusside, 3-morpholinosydonimine, and AsA+NaNO2] were effective in reducing MJ-induced leaf senescence. PBN prevented MJ-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and AsA, and increase in the activities of antioxidative enzymes. The protective effect of PBN on MJ-promoted senescence, MJ-increased H2O2 content and lipid peroxidation, MJ-decreased GSH and AsA, and MJ-increased antioxidative enzyme activities was reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO-specific scavenger, suggesting that the protective effect of PBN is attributable to NO released. Reduction of MJ-induced senescence by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2  相似文献   

13.
The role of H2O2 in salicylic acid (SA)-induced protection of rice leaves against subsequent Cd toxicity was investigated. SA pretreatment resulted in an increase in the contents of endogenous SA, as judged by the expression of OsWRKY45 (a SA responsive gene), and H2O2 in rice leaves. Diphenyleneiodonium (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented SA-increased H2O2 production, suggesting that NADPH oxidase is a H2O2-generating enzyme in SA-pretreated rice leaves. DPI and IMD also inhibited SA-increased activities of superoxide dismutase (SOD), ascorbate peroixdase (APX), and glutathione reductase (GR) activities, but had no effect on SA-increased catalase (CAT) activity. Moreover, SA-induced protection against subsequent Cd toxicity could also be prevented by DPI and IMD. The inhibitory effect of DPI and IMD on SA-induced protection against subsequent Cd toxicity could be reversed by exogenous H2O2. All these results suggested that SA-induced protection against subsequent Cd toxicity is mediated through H2O2. This conclusion is supported further by the observations that exogenous H2O2 application resulted in an increase in SOD, APX, and GR activities, but not CAT activity and a protection against subsequent Cd toxicity of rice leaves.  相似文献   

14.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important signalling molecule and antioxidant. Here we investigated the protective effect of NO against the toxicity caused by excess CuSO4 (50 μM) in the adventitious roots of mountain ginseng. It was found that NO donor, sodium nitroprusside (SNP), was effective in reducing Cu-induced toxicity in the mountain ginseng adventitious roots. Protective effect of SNP, as indicated by extent of lipid peroxidation, was reversed by incorporation of 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (CPTIO), a NO scavenger, in the medium suggesting that the protective effect of SNP is attributable to NO released, which was revealed from in situ confocal laser scanning microscopic localization of NO in the adventitious roots of mountain ginseng. Results obtained in the present study suggest that reduction of excess Cu-induced toxicity by SNP is most likely mediated through the modulation in the activities of antioxidant enzymes involved in H2O2 detoxification (catalase, peroxidase, ascorbate peroxidase) and in the maintenance of cellular redox couples (glutathione reductase), and contents of molecular antioxidants (particularly non-protein thiol, ascorbate and its redox status). Exogenous NO supply also improved the activity of superoxide dismutase, an enzyme responsible for O2 ·− dismutation, and NADPH oxidase, an enzyme responsible for O2 ·− generation, in excess Cu supplied adventitious roots of mountain ginseng.  相似文献   

15.
16.
A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μM Cd increased the accumulation of O2•−, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5–15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide synthetase-like enzymes in roots/leaves. A Cd-induced NO transient increase in roots of the Cd-tolerant genotype might partly contribute to its Cd tolerance. Exogenous NO dramatically alleviated Cd toxicity, markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation, ameliorated Cd-induced damage to leaf/root ultrastructure, and increased chlorophyll content and P n. External NO counteracted the pattern of alterations in certain antioxidant enzymes induced by Cd; for example, it significantly elevated the depressed SOD, APX, and catalase (CAT) activities in the Cd-sensitive genotype after 10- and 15-day treatments. Furthermore, NO significantly increased stromal APX and Mn-SOD activities in both genotypes and upregulated Cd-induced decrease in cAPX activity and gene expression of root/leaf cAPX and leaf CAT1 in the Cd-sensitive genotype. These data suggest that under Cd stress, NO, as a potent antioxidant, protects barley seedlings against oxidative damage by directly and indirectly scavenging ROS and helps to maintain stability and integrity of the subcellular structure.  相似文献   

17.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

18.
Abstract

The physiological responses of peanut seedlings exposed to low (5 µM) or high (200 µM) cadmium (Cd) concentration and the ability of sodium nitroprusside (SNP, a donor of NO) to reverse the harmful effects of Cd on peanut (Arachis hypogaea L.) were studied. Changes in plant growth parameters, chlorophyll content, antioxidant system, nutrient contents and Cd accumulation were investigated. The results showed that SNP and 5 µM Cd improved plant growth and chlorophyll content. Furthermore, antioxidative system was up-regulated, and as a result, the production rate of superoxide radical (O2??) was reduced. Moreover, the absorption of nutrient elements was not impacted, and Cd toxicity was not observed. However, 200 µM Cd had negative effects on the above measured parameters and dramatically increased the accumulation of Cd in all the plant organs. In the 200 µM Cd treatment, addition of 250 µM SNP stimulated plant growth and increased chlorophyll content. It also enhanced the regulation of antioxidative system and reduced the production rate of O2?? and malondialdehyde (MDA) content. Besides, SNP supply enhanced the absorption of nutrient elements and restrained the absorption and transport of Cd.  相似文献   

19.
以4年生南方红豆杉幼苗为实验材料,通过对南方红豆杉幼苗喷施不同浓度外源一氧化氮(NO)供体硝普钠溶液(0、0.01、0.1、0.5和1 mmol·L-1SNP),测定光合色素含量、抗氧化酶活性、丙二醛(MDA)含量和过氧化氢(H2O2)含量等生理指标,以探讨不同浓度外源NO对南方红豆杉叶片光合色素和抗氧化酶的影响。结果表明:喷施低浓度(0.01、0.1 mmol·L-1)SNP可显著提高南方红豆杉叶片的叶绿素a、叶绿素b、类胡萝卜素和总叶绿素含量,增加叶绿素a/b的比值,而喷施高浓度(0.5、1 mmol·L-1)SNP降低了叶片的光合色素含量。随着外源NO供体浓度的增加,叶片过氧化氢酶(CAT)活性显著增加,过氧化物酶(POD)活性先增加后降低。此外,处理前期,低浓度SNP处理明显提高了抗坏血酸过氧化物酶(APX)活性,而高浓度SNP处理显著降低了APX活性,处理后期APX活性随SNP浓度的增加而显著下降。喷施低浓度SNP可有效提高超氧化物歧化酶(SOD)活性和增加可溶性蛋白含量,降低MDA和H2O2的含量,而喷施高浓度SNP显著增加了MDA和H2O2的含量。因此,低浓度的SNP(<0.5 mmol·L-1)处理南方红豆杉幼苗,可增加其叶绿素含量,提高抗氧化酶活性,降低MDA和H2O2的含量,而高浓度的SNP(≥0.5 mmol·L-1)处理会降低叶绿素含量,提高H2O2含量,增加细胞膜质过氧化程度,从而对南方红豆杉幼苗造成一定伤害。  相似文献   

20.
The role of reduced glutathione (GSH) in heat shock (HS)- and H2O2-induced protection of rice (Oryza sativa L., cv. Taichung 1) seedlings from Cd stress was investigated. HS- and H2O2-pretreatment resulted in an increase in GSH content in leaves of rice seedlings. Addition of exogenous GSH under non-HS conditions, which resulted in an increase in GSH in leaves, enhanced subsequent Cd tolerance of rice seedlings. Pretreatment with buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, which effectively inhibited GSH content induced by HS and H2O2, reduced subsequent Cd tolerance. Furthermore, the effect of BSO on HS- and H2O2-induced GSH accumulation and toxicity by subsequent Cd stress can be reversed by the addition of GSH. The time-course analyses of HS in rice seedlings demonstrated that the accumulation of H2O2 preceded the increase in GSH. Based on the data obtained in this study, it could be concluded that the early accumulation of H2O2 during HS signals the increase in GSH content, which in turn protects rice seedlings from oxidative damage caused by Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号