首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Apaf-1-independent putative caspase-2 activation complex   总被引:12,自引:0,他引:12  
Caspase activation is a key event in apoptosis execution. In stress-induced apoptosis, the mitochondrial pathway of caspase activation is believed to be of central importance. In this pathway, cytochrome c released from mitochondria facilitates the formation of an Apaf-1 apoptosome that recruits and activates caspase-9. Recent data indicate that in some cells caspase-9 may not be the initiator caspase in stress-mediated apoptosis because caspase-2 is required upstream of mitochondria for the release of cytochrome c and other apoptogenic factors. To determine how caspase-2 is activated, we have studied the formation of a complex that mediates caspase-2 activation. Using gel filtration analysis of cell lysates, we show that caspase-2 is spontaneously recruited to a large protein complex independent of cytochrome c and Apaf-1 and that recruitment of caspase-2 to this complex is sufficient to mediate its activation. Using substrate-binding assays, we also provide the first evidence that caspase-2 activation may occur without processing of the precursor molecule. Our data are consistent with a model where caspase-2 activation occurs by oligomerization, independent of the Apaf-1 apoptosome.  相似文献   

2.
We report here the biochemical analysis of the reconstituted de novo procaspase-9 activation using highly purified cytochrome c, recombinant apoptotic protease-activating factor-1 (Apaf-1), and recombinant procaspase-9. Using a nucleotide binding assay, we found that Apaf-1 alone bound dATP poorly and the nucleotide binding to Apaf-1 was significantly stimulated by cytochrome c. The binding of dATP to Apaf-1 induces the formation of a multimeric Apaf-1. cytochrome c complex, apoptosome. Procaspase-9 also synergistically promotes dATP binding to Apaf-1 in a cytochrome c-dependent manner. The dATP bound to apoptosome remained as dATP, not dADP. A nonhydrolyzable ATP analog, ADPCP (beta,gamma-methylene adenosine 5'-triphosphate), was able to support apoptosome formation and caspase activation in place of dATP or ATP. These data indicate that the key event in Apaf-1-mediated caspase-9 activation is cytochrome c-induced dATP binding to Apaf-1.  相似文献   

3.
The cyclic AMP signal transduction pathway modulates apoptosis in diverse cell types, although the mechanism is poorly understood. A critical component of the intrinsic apoptotic pathway is caspase-9, which is activated by Apaf-1 in the apoptosome, a large complex assembled in response to release of cytochrome c from mitochondria. Caspase-9 cleaves and activates effector caspases, predominantly caspase-3, resulting in the demise of the cell. Here we identified a distinct mechanism by which cyclic AMP regulates this apoptotic pathway through activation of protein kinase A. We show that protein kinase A inhibits activation of caspase-9 and caspase-3 downstream of cytochrome c in Xenopus egg extracts and in a human cell-free system. Protein kinase A directly phosphorylates human caspase-9 at serines 99, 183, and 195. However, mutational analysis demonstrated that phosphorylation at these sites is not required for the inhibitory effect of protein kinase A on caspase-9 activation. Importantly, protein kinase A inhibits cytochrome c-dependent recruitment of procaspase-9 to Apaf-1 but not activation of caspase-9 by a constitutively activated form of Apaf-1. These data indicate that extracellular signals that elevate cyclic AMP and activate protein kinase A may suppress apoptosis by inhibiting apoptosome formation downstream of cytochrome c release from mitochondria.  相似文献   

4.
Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP   总被引:8,自引:0,他引:8  
The apoptosome is a multiprotein complex comprising Apaf-1, cytochrome c, and caspase-9 that functions to activate caspase-3 downstream of mitochondria in response to apoptotic signals. Binding of cytochrome c and dATP to Apaf-1 in the cytosol leads to the assembly of a heptameric complex in which each Apaf-1 subunit is bound noncovalently to a procaspase-9 subunit via their respective CARD domains. Assembly of the apoptosome results in the proteolytic cleavage of procaspase-9 at the cleavage site PEPD(315) to yield the large (p35) and small (p12) caspase-9 subunits. In addition to the PEPD site, caspase-9 contains a caspase-3 cleavage site (DQLD(330)), which when cleaved, produces a smaller p10 subunit in which the NH(2)-terminal 15 amino acids of p12, including the XIAP BIR3 binding motif, are removed. Using purified proteins in a reconstituted reaction in vitro, we have assessed the relative impact of Asp(315) and Asp(330) cleavage on caspase-9 activity within the apoptosome. In addition, we characterized the effect of caspase-3 feedback cleavage of caspase-9 on the rate of caspase-3 activation, and the potential ramifications of Asp(330) cleavage on XIAP-mediated inhibition of the apoptosome. We have found that cleavage of procaspase-9 at Asp(330) to generate p35, p10 or p37, p10 forms resulted in a significant increase (up to 8-fold) in apoptosome activity compared with p35/p12. The significance of this increase was demonstrated by the near complete loss of apoptosome-mediated caspase-3 activity when a point mutant (D330A) of procaspase-9 was substituted for wild-type procaspase-9 in the apoptosome. In addition, cleavage at Asp(330) exposed a novel p10 NH(2)-terminal peptide motif (AISS) that retained the ability to mediate XIAP inhibition of caspase-9. Thus, whereas feedback cleavage of caspase-9 by caspase-3 significantly increases the activity of the apoptosome, it does little to attenuate its sensitivity to inhibition by XIAP.  相似文献   

5.
Germ line mutations in the bone morphogenetic protein (BMP) receptor type II (BMPRII) gene have been found in >50% of familial idiopathic pulmonary arterial hypertension (IPAH) patients and in 30% of sporadic cases of IPAH. Mutations of BMPRII occur in the extracellular ligand-binding domain, in the cytoplasmic serine/threonine kinase domain, or in the long carboxy terminus domain of unknown function. In this study, we demonstrate that BMPs promote apoptotic cell death in normal human pulmonary artery smooth muscle cells (PASMCs) by activation of caspases-3, -8, and -9, cytochrome c release, and downregulation of Bcl-2. Normal PASMCs expressing a kinase domain mutant or a carboxy-terminal domain deletion mutant of BMPRII identified in IPAH patients are resistant to BMP-mediated apoptosis. This dominant-negative effect may act in heterozygous patients and lead to the development of the pulmonary vascular medial hypertrophy found in IPAH patients. Our study also demonstrates an essential role of the carboxy terminus domain of BMPRII in the activation of the apoptotic signaling cascade.  相似文献   

6.
Y Hu  M A Benedict  L Ding  G Nú?ez 《The EMBO journal》1999,18(13):3586-3595
Apaf-1 plays a critical role in apoptosis by binding to and activating procaspase-9. We have identified a novel Apaf-1 cDNA encoding a protein of 1248 amino acids containing an insertion of 11 residues between the CARD and ATPase domains, and another 43 amino acid insertion creating an additional WD-40 repeat. The product of this Apaf-1 cDNA activated procaspase-9 in a cytochrome c and dATP/ATP-dependent manner. We used this Apaf-1 to show that Apaf-1 requires dATP/ATP hydrolysis to interact with cytochrome c, self-associate and bind to procaspase-9. A P-loop mutant (Apaf-1K160R) was unable to associate with Apaf-1 or bind to procaspase-9. Mutation of Met368 to Leu enabled Apaf-1 to self-associate and bind procaspase-9 independent of cytochrome c, though still requiring dATP/ATP for these activities. The Apaf-1M368L mutant exhibited greater ability to induce apoptosis compared with the wild-type Apaf-1. We also show that procaspase-9 can recruit procaspase-3 to the Apaf-1-procaspase-9 complex. Apaf-1(1-570), a mutant lacking the WD-40 repeats, associated with and activated procaspase-9, but failed to recruit procaspase-3 and induce apoptosis. These results suggest that the WD-40 repeats may be involved in procaspase-9-mediated procaspase-3 recruitment. These studies elucidate biochemical steps required for Apaf-1 to activate procaspase-9 and induce apoptosis.  相似文献   

7.
We previously demonstrated that tumour necrosis factor (TNF)-induced ceramide production by endosomal acid sphingomyelinase (A-SMase) couples to apoptosis signalling via activation of cathepsin D and cleavage of Bid, resulting in caspase-9 and caspase-3 activation. The mechanism of TNF-mediated A-SMase activation within the endolysosomal compartment is poorly defined. Here, we show that TNF-induced A-SMase activation depends on functional caspase-8 and caspase-7 expression. The active forms of all three enzymes, caspase-8, caspase-7 and A-SMase, but not caspase-3, colocalize in internalized TNF receptosomes. While caspase-8 and caspase-3 are unable to induce activation of purified pro-A-SMase, we found that caspase-7 mediates A-SMase activation by direct interaction resulting in proteolytic cleavage of the 72-kDa pro-A-SMase zymogen at the non-canonical cleavage site after aspartate 253, generating an active 57 kDa A-SMase molecule. Caspase-7 down modulation revealed the functional link between caspase-7 and A-SMase, confirming proteolytic cleavage as one further mode of A-SMase activation. Our data suggest a signalling cascade within TNF receptosomes involving sequential activation of caspase-8 and caspase-7 for induction of A-SMase activation by proteolytic cleavage of pro-A-SMase.  相似文献   

8.
We have generated rat monoclonal antibodies that specifically recognise caspase-2 from many species, including mouse, rat and humans. Using these antibodies, we have investigated caspase-2 expression, subcellular localisation and processing. We demonstrate that caspase-2 is expressed in most tissues and cell types. Cell fractionation and immunohistochemistry experiments show that caspase-2 is found in the nuclear and cytosolic fractions, including a significant portion present in the Golgi complex. We found that caspase-2 is processed in response to many apoptotic stimuli but experiments with caspase-2 deficient mice demonstrated that it is not required for apoptosis of thymocytes or dorsal root ganglia (DRG) neurons in response to a variety of cytotoxic stimuli. Caspase-2 processing does not occur in thymocytes lacking Apaf-1 or caspase-9, suggesting that in this cell type, activation of caspase-2 occurs downstream of apoptosome formation.  相似文献   

9.
Apoptosis is a biological process relevant to human disease states that is strongly regulated through protein-protein complex formation. These complexes represent interesting points of chemical intervention for the development of molecules that could modulate cellular apoptosis. The apoptosome is a holoenzyme multiprotein complex formed by cytochrome c-activated Apaf-1 (apoptotic protease-activating factor), dATP and procaspase-9 that link mitochondria disfunction with activation of the effector caspases and in turn is of interest for the development of apoptotic modulators. In the present study we describe the identification of compounds that inhibit the apoptosome-mediated activation of procaspase-9 from the screening of a diversity-oriented chemical library. The active compounds rescued from the library were chemically optimised to obtain molecules that bind to both recombinant and human endogenous Apaf-1 in a cytochrome c-noncompetitive mechanism that inhibits the recruitment of procaspase-9 by the apoptosome. These newly identified Apaf-1 ligands decrease the apoptotic phenotype in mitochondrial-mediated models of cellular apoptosis.  相似文献   

10.
Lesions in the parkin gene cause early onset Parkinson's disease by a loss of dopaminergic neurons, thus demonstrating a vital role for parkin in the survival of these neurons. Parkin is inactivated by caspase cleavage, and the major cleavage site is after Asp126. Caspases responsible for parkin cleavage were identified by several experimental paradigms. Transient coexpression of caspases and wild type parkin in HEK-293 cells identified caspase-1, -3, and -8 as efficient inducers of parkin cleavage whereas caspase-2, -7, -9, and -11 did not induce cleavage. A D126A parkin mutation abrogates cleavage induced by caspase-1 and -8, but not by caspase-3. In anti-Fas-treated Jurkat T cells, parkin cleavage was inhibited by caspase inhibitors hFlip and CrmA (but not by X-linked inhibitor of apoptosis (XIAP)), indicating that caspase-8 (but not caspase-3) is responsible for the parkin cleavage in this model. Moreover, induction of apoptosis in caspase-3-deficient MCF7 cells, either by caspase-1 or -8 overexpression or by tumor necrosis factor-alpha treatment, led to parkin cleavage. These results demonstrate that caspase-1 and -8 can directly cleave parkin and suggest that death receptor activation and inflammatory stress can cause loss of the ubiquitin ligase activity of parkin, thus causing accumulation of toxic parkin substrates and triggering dopaminergic cell death.  相似文献   

11.
Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.  相似文献   

12.
Caspase-1 activation of caspase-6 in human apoptotic neurons   总被引:2,自引:0,他引:2  
Active caspase-6 (Csp-6) induces cell death in primary cultures of human neurons and is abundant in the neuropathological lesions of Alzheimer's disease. However, the mode of Csp-6 activation is not known. Here, we show that the Csp-1 inhibitor, Z-YVAD-fmk specifically prevents activation of Csp-6 and cell death in human neurons. A transient increase in Csp-1-like activity and an increase in the p23Csp-1 subunit occur early after serum deprivation. Recombinant active Csp-1 (R-Csp-1) cleaves recombinant and neuronal pro-Csp-6 in vitro resulting in Csp-6 activity. However, R-Csp-1 does not induce cell death when microinjected in human neurons despite the inhibition of serum-deprivation induced cell death with a Csp-1 dominant negative construct. These results show that Csp-1 is an upstream positive regulator of Csp-6-mediated cell death in primary human neurons. Furthermore, these results suggest that the activation of Csp-1 must be accompanied by an apoptotic insult to induce Csp-6-mediated cell death.  相似文献   

13.
c-Myc is known to induce or potentiate apoptotic processes predominantly by triggering or enhancing the activity of caspases, but the activation mechanisms of caspases by c-Myc remain still poorly understood. Here we found that in MycER™ rat fibroblasts the activation of c-Myc led to an early activation and cleavage of the initiator caspase-8, and concurrent processing and activation of the effector caspases 3 and 7. Interestingly, the expression of cellular FLICE inhibitory protein (c-FLIP) mRNA and the encoded protein, c-FLIPL, a catalytically inactive homologue of caspase-8, were down-regulated prior to or coincidently with the activation of caspase-8. Of the other known initiators, caspase-9, involved in the mitochondrial pathway, was activated/processed surprisingly late, only after the effector caspases 3/7. Further, we studied the potential involvement of the Fas- and tumor necrosis factor receptor (TNFR)-mediated signaling in the activation of caspase-8 by c-Myc. Blocking of the function of these death receptors by neutralizing antibodies against Fas ligand and TNF-α did not prevent the processing of caspase-8 or cell death. c-Myc was neither found to induce any changes in the expression of TNF-related apoptosis inducing ligand (TRAIL) or its receptor. These data suggest that caspase-8 does not become activated through an extrinsic but an “intrinsic/intracellular” apoptotic pathway unleashed by the down-regulation of c-FLIP by c-Myc. Moreover, ectopic expression of c-FLIPL inhibited the c-Myc-induced apoptosis.  相似文献   

14.
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.  相似文献   

15.
高温热应激条件下,凋亡蛋白表达量升高,生殖细胞凋亡增加。凋亡蛋白酶活化因子1(apoptosis protease activating factor 1,Apaf-1)和凋亡蛋白酶活化起始者含半胱氨酸的天冬氨酸蛋白水解酶9,(cysteine aspartic acid specific protease 9, Caspase-9)是细胞凋亡内源途径中的重要调节蛋白,热应激条件下猪睾丸Apaf-1和Caspase 9的表达未见报道。本研究发现,夏季畜舍高温使Apaf-1和Caspase-9表达量升高。qRT-PCR和Western印迹结果显示,与对照组(正常舍温20℃)相比,短时热应激组(40~42℃,1 h/d, 7 d)和长时热应激组(40~42℃,1 h/d, 42 d),Apaf-1和Caspase-9 mRNA和蛋白的相对表达量均显著升高。免疫组织化学研究发现,Apaf-1在猪睾丸组织中免疫反应阳性物定位于间质细胞、支持细胞和各个发育阶段生精细胞。热应激处理导致精母细胞和精子细胞Apaf-1表达量升高。在各实验猪睾丸组织中,Caspase-9定位于间质细胞、支持细胞和各个发育阶段生精细胞的胞质中。与对照组相比,热应激处理导致减数分裂以后的生精细胞和支持细胞Caspase-9表达量升高。上述结果表明,高温热应激促进Apaf-1和Caspase-9的表达,提示Apaf-1和Caspase-9表达的变化可能与猪舍高温导致的猪精液品质下降存在关联。  相似文献   

16.
Interferon regulatory factor 3 (IRF3) plays a crucial role in mediating cellular responses to virus intrusion. The protein kinase TBK1 is a key regulator inducing phosphorylation of IRF3. The regulatory mechanisms during IRF3 activation remain poorly characterized. In the present study, we have identified by yeast two-hybrid approach a specific interaction between IRF3 and chaperone heat-shock protein of 90 kDa (Hsp90). The C-terminal truncation mutant of Hsp90 is a strong dominant-negative inhibitor of IRF3 activation. Knockdown of endogenous Hsp90 by RNA interference attenuates IRF3 activation and its target gene expressions. Alternatively, Hsp90-specific inhibitor geldanamycin (GA) dramatically reduces expression of IRF3-regulated interferon-stimulated genes and abolishes the cytoplasm-to-nucleus translocation and DNA binding activity of IRF3 in Sendai virus-infected cells. Significantly, virus-induced IRF3 phosphorylation is blocked by GA, whereas GA does not affect the protein level of IRF3. In addition, TBK1 is found to be a client protein of Hsp90 in vivo. Treatment of 293 cells with GA interferes with the interaction of TBK1 and Hsp90, resulting in TBK1 destabilization and its subsequent proteasome-mediated degradation. Besides maintaining stability of TBK1, Hsp90 also forms a novel complex with TBK1 and IRF3, which brings TBK1 and IRF3 dynamically into proximity and facilitates signal transduction from TBK1 to IRF3. Our study uncovers an essential role of Hsp90 in the virus-induced activation of IRF3.  相似文献   

17.
Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB.   总被引:24,自引:0,他引:24  
Ced-4 and Apaf-1 belong to a major class of apoptosis regulators that contain caspase-recruitment (CARD) and nucleotide-binding oligomerization domains. Nod1, a protein with an NH2-terminal CARD-linked to a nucleotide-binding domain and a COOH-terminal segment with multiple leucine-rich repeats, was identified. Nod-1 was found to bind to multiple caspases with long prodomains, but specifically activated caspase-9 and promoted caspase-9-induced apoptosis. As reported for Apaf-1, Nod1 required both the CARD and P-loop for function. Unlike Apaf-1, Nod1 induced activation of nuclear factor-kappa-B (NF-kappaB) and bound RICK, a CARD-containing kinase that also induces NF-kappaB activation. Nod1 mutants inhibited NF-kappaB activity induced by RICK, but not that resulting from tumor necrosis factor-alpha stimulation. Thus, Nod1 is a leucine-rich repeat-containing Apaf-1-like molecule that can regulate both apoptosis and NF-kappaB activation pathways.  相似文献   

18.
Apoptosis after growth factor withdrawal or drug treatment is associated with mitochondrial cytochrome c release and activation of Apaf-1 and caspase-9. To determine whether loss of Apaf-1, caspase-2, and caspase-9 prevented death of factor-starved cells, allowing them to proliferate when growth factor was returned, we generated IL-3-dependent myeloid lines from gene-deleted mice. Long after growth factor removal, cells lacking Apaf-1, caspase-9 or both caspase-9 and caspase-2 appeared healthy, retained intact plasma membranes, and did not expose phosphatidylserine. However, release of cytochrome c still occurred, and they failed to form clones when IL-3 was restored. Cells lacking caspase-2 alone had no survival advantage. Therefore, Apaf-1, caspase-2, and caspase-9 are not required for programmed cell death of factor-dependent cells, but merely affect its rate. In contrast, transfection with Bcl-2 provided long-term, clonogenic protection, and could act independently of the apoptosome. Unlike expression of Bcl-2, loss of Apaf-1, caspase-2, or caspase-9 would therefore be unlikely to enhance the survival of cancer cells.  相似文献   

19.
The purpose of this study was to determine the effect of hypoxia on caspase-8 and -9 gene and protein expression and activity in corneal epithelium. Non-transformed human corneal epithelial cells (HCEC) were cultured in 2% oxygen. A cDNA expression array coupled with densitometric analysis was used to compare relative mRNA expression levels of 96 apoptosis-related genes in hypoxic and normoxic HCEC. Caspase-8, caspase-9, FLIP, Fas, FasL, and TNF protein expression was assessed further using Western blot analysis and ELISA. Caspase-8 and -9 activities were measured using a fluorometric activity assay. Hypoxia did not affect caspase-8 or -9 gene or protein expression in HCEC, however caspase-9 activity was significantly increased. Hypoxia significantly suppressed the activity of caspase-8. FLIP and Fas gene and protein expression were not significantly altered in hypoxic cells compared to normoxic controls. mRNA and protein levels of TNF and TNFR-1 were significantly decreased, while FasL mRNA and proteins levels were significantly increased in hypoxic HCEC. In corneal epithelium stressed by hypoxia caspase-9 activity is upregulated, suggesting that apoptosis proceeds via the mitochondrial pathway. Caspase-8 activity may be suppressed because the loss of TNF and TNFR-1 gene and protein expression inhibits the initial formation of a death signaling complex.  相似文献   

20.
Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号