首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New unnatural sugar nucleotides, UDP-Fuc and CDP-Fuc were synthesized from fucose-beta-1-phosphate and nucleotide monophosphates activated as morpholidates. Furthermore, a nucleotide analogue was prepared by phosphorylation of 1-(beta-D-ribofuranosyl)cyanuric acid, itself obtained as a protected derivative by condensation of the persilylated derivative of cyanuric acid with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose in 74% yield. This phosphate activated according to the same procedure was condensed with fucose-beta-1-phosphate, affording a new sugar nucleotide conjugate (NDP-Fuc) which was evaluated together with UDP-Fuc, CDP-Fuc and ADP-Fuc, as fucose donors in alpha-(1-->4/3)-fucosyltransferase (FucT-III) catalyzed reaction. Fucose transfer could be observed with each of the donors and kinetic parameters were determined using a fluorescent acceptor substrate. Efficiency of the four analogues towards FucT-III was in the following order: UDP-Fuc=ADP-Fuc>NDP-Fuc>CDP-Fuc. According to the same strategy ADP-GlcNAc was prepared from AMP-morpholidate and N-acetylglucosamine-alpha-1-phosphate; tested as a glucosaminyl donor towards Neisseria meningitidis N-acetylglucosaminyl transferase (LgtA), ADP-GlcNAc was recognized with 0.1% efficiency as compared with UDP-GlcNAc, the natural donor substrate.  相似文献   

2.
Mycothiol is the major thiol produced by mycobacteria and is required for growth of Mycobacterium tuberculosis. The final three steps in the biosynthesis of mycothiol have been fully elucidated but the initial steps have been unclear. A glycosyltransferase, MshA, is required for production of the mycothiol precursor, 1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol, but its substrates and immediate products were unknown. In this study, we show that the N-acetylglucosamine donor is UDP-N-acetylglucosamine and that the N-acetylglucosamine acceptor is 1L-myo-inositol 1-phosphate. The reaction generates UDP and 1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol 3-phosphate. Using cell-free extracts of M. smegmatis mc(2)155, little activity was obtained with myo-inositol, 1D-myo-inositol 1-phosphate, or myo-inositol 2-phosphate as the N-acetylglucosamine acceptor. A phosphatase, designated MshA2, is required to dephosphorylate 1-O-(2-acetamido-2-deoxy-alpha-glucopyranosyl)-D-myo-inositol 3-phosphate to produce 1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-D-myo-inositol. The latter is deacetylated, ligated with cysteine, and the cysteinyl amino group acetylated by acetyl-CoA to complete the mycothiol biosynthesis pathway. Uptake and concentration of myo-[14C]inositol is rapid in Mycobacterium smegmatis and leads to production of radiolabeled inositol 1-phosphate and mycothiol. This demonstrates the presence of a myo-inositol transporter and a kinase that generates 1L-myo-inositol 1-phosphate. The biochemical pathway of mycothiol biosynthesis is now fully elucidated.  相似文献   

3.
Hydrogenphosphonate method was used for synthesis of 4-nitrophenyl 2-acetamido-3- and 4-nitrophenyl 2-acetamido-4-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl phosphate)-2-deoxy-beta-D-glucopyranosides. The glycosides, phosphate diester fragments of the title bacteria capsular antigens, were obtained by H-phosphorylation of the suitably protected 2-acetamido-2-deoxy-beta-D-glucopyranosides with 2-acetamido-3,4,6-tri-O-benzoyl-2-deoxy-alpha-D-glucopyranosyl H-phosphonate in the presence of trimethylacetyl chloride followed by oxidation and deprotection.  相似文献   

4.
1-D-6-O-[2-(N-hydroxyaminocarbonyl)amino-2-deoxy-alpha-D-glucopyranosyl]-myo-inositol 1-(n-octadecyl phosphate) was prepared to probe the reaction mechanism of the putative zinc-dependent metalloenzyme 2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->6)-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol biosynthesis.  相似文献   

5.
The NIS-mediated iodocyclization of 4,5,7-tri-O-benzyl-3-(N-benzylacetamido)-1,2,3-trideoxy-D-gluco-hept-1-enitol gave unexpectedly a 1,3-imino-heptitol derivative, namely 2-O-acetyl-N-benzyl-4,5,7-tri-O-benzyl-1,3-dideoxy-1,3-imino-D-glycero-D-ido-heptitol. This compound is a new example of a rare class of azetidine imino alditol derivatives which have interesting properties such as glycosidase inhibitors. The physical and spectral data for this imino heptitol were essentially identical to those reported for 2,6-anhydro-4,5,7-tri-O-benzyl-3-(N-benzylacetamido)-3-deoxy-D-glycero-D-ido-heptitol, a derivative of C-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)methanol obtained from the same precursor [Lay, L.; Nicotra, F.; Panza, L.; Verani, A. Gazz. Chim. Ital. 1992, 122, 345-348]; these findings cast doubts on the structure reported for the latter product.  相似文献   

6.
A first total synthesis of a novel sulfated ganglioside, 3'-O-sulfo-GM1b, is described. The suitably protected gangliotriose (GgOSe3) derivative, 2-(trimethylsilyl)ethyl (2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranosyl)-(1-->4)-(2,6-di-O-benzyl-3-O-p-methoxybenzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside was glycosylated with the alpha-NeuAc-(2-->3)-galactose donor to give the protected GM1b oligosaccharide (95%). After proper manipulation of the protecting groups, the oligosaccharide was converted into the target ganglioside by the successive introduction of the ceramide and sulfo groups, followed by complete deprotection.  相似文献   

7.
Two new analogues of 1-D-1-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol, a biosynthetic intermediate in the production of mycothiol in the Mycobacteria have been synthesized. Both the 2-deoxy-2-C-(2'-hydroxypropyl)-D-glucoside 5, and the 2-deoxy-2-C-(2'-oxopropyl)-D-glucoside 6, are derived from fully benzylated 1-D-1-O-(2-C-allyl-2-deoxy)-D-glucopyranosyl)-myo-inositol 20, readily assembled via a protected 2-C-allyl-2-deoxyglucosyl fluoride. Both 5 and 6 inhibit the incorporation of [3H]inositol by whole cells of Mycobacterium smegmatis into a number of metabolites which contain inositol.  相似文献   

8.
H A Nunez  R Barker 《Biochemistry》1976,15(17):3843-3847
The metal ion catalysed decomposition of the nucleotide diphosphate sugars, uridine diphosphate glucose, uriding diphosphate galactose, uridine diphosphate N-acetylglucosamine, guanosine diphosphate mannose, and guanosine diphosphate fucose (UDPGlc, UDPGal, UDPGlc-NAc, GDPMan, and GDPFuc, respectively), has been studies as a function of pH. UDPDlc and UDPGal decompose readily to the a,2-cycle phosphate derivative of the sugar and uridine 5'-phosphoric acid (UMP) in the presence of Mn2+. Under all conditions tested, UDPGal decomposes two to three times more rapidly than does UDPGlc. GDPFuc is slowly degraded to free fucose under similar conditions; the other nucleotide diphosphate sugars are stable. The rate of reaction increases with increasing hydroxide ion concentration from pH 6.5 to 7.9 and with metal ion concentration from 10 to 200 mm. Several metal ions are effective catalysts; at pH 7.5 WITH 20 mM UDPGal and 20 mM metal ion, the following apparent first-order rate constants (min-1 x 10(4)) were obtained: Eu3+ 700; Mn2+, 70; Co2+ 27; Zn2+, 22; Ca2+, 3.0; Cu2+, 2.4; and Mg2+, 0. It appears that Mn2+ concentrations that have been used in studies with nucleotide diphosphate sugars at neutral pH can catalyze significant decomposition leading to erroneous interpretation of kinetic and incorporation experiments.  相似文献   

9.
Members of the actinomycetes produce 1D-1-O-(2-[N-acetyl-L-cysteinyl]amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol or mycothiol 1 as principal low molecular mass thiol. Chemical synthesis of a biosynthetic precursor of mycothiol, the pseudodisaccharide 1D-1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 13 was achieved by the following steps: (1) Enantioselective synthesis gave the glycosyl acceptors (-)-2,3,4,5,6-penta-O-acetyl-D-myo-inositol D-7 and the corresponding L-isomer L-7. (2) Condensation of D-7 and L-7 with the glycosyl donor 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitrophenylamino)-alpha-D-glucopyranosylbromide afforded the corresponding alpha and beta anomeric products, which could be resolved by silica gel chromatography. (3) Deprotection of these by hydrolysis using an anion exchange resin gave 1D- and 1L-1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 13 and 15 and the corresponding beta-coupled anomers 14 and 16. Only 13, and to a much lesser extent 15, were used by enzymes present in an ammonium sulphate fraction of a cellfree extract of Mycobacterium smegmatis for the enzymatic synthesis of mycothiol. In the absence of acetyl-SCoA, the immediate biosynthetic precursor of 1, desacetylmycothiol, was the major product.  相似文献   

10.
The synthesis of anomeric butyl glycosides of muramyl dipeptide was reported. alpha-Butyl glycoside of N-acetyl-D-glucosamine was 4,6-O-benzylidenated and the benzylidene derivative was 3-O-alkylated by the Williamson reaction with sodium (S)-2-chloropropionate. The resulting protected alpha-butyl glycoside of muramic acid was then condensed with L-Ala-D-iGln-OBzl by the DCC-HOSu method. Mild acidic hydrolysis and subsequent catalytic hydrogenolysis of the resulting glycopeptide yielded the target alpha-butyl glycoside of N-acetyl-L-alanyl-D-isoglutamine. In the synthesis of beta-butyl glycoside of N-acetylmuramyl-L-alanyl-D-isoglutamine, 2-acetamido- 4,6-di-O-acetyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D-glucopyranose, a 1-OH derivative of muramic acid, was the key compound. Its interaction with the excess thionyl chloride resulted in the corresponding glycosyl halide, which was condensed with n-butanol according to Helferich. O-Deacetylation, 4,6-isopropylidenation, and subsequent alkaline hydrolysis of the resulting compound gave the protected beta-butyl glycoside of muramic acid. Its activation and condensation with L-Ala-D-iGln-OBzl and the subsequent removal of protective groups were performed in the same manner as the reactions in the synthesis of alpha-butyl glycoside of N-acetyl-L-alanyl-D-isoglutamine. The adjuvant activity of the butyl glycosides to HIV proteins rgp160 and rgp120 and their ability to affect in vitro HIV replication and the proliferation of mouse spleen T-cells were examined. The biological activity of anomeric muramyl dipeptides was shown to depend essentially on the configuration of their anomeric center.  相似文献   

11.
Methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside (1) furnished a crystalline 3-O-bromoacetyl derivative that was treated with the dichloromethyl methyl ether-ZnCl2 reagent to give 2,4-di-O-benzoyl-3-O-bromoacetyl-alpha-L-rhamnopyranosyl chloride (3). Compounds 1 and 3 were condensed under the conditions of base-deficient, silver trifluoromethanesulfonate-mediated glycosylation to give a fully protected rhamnobioside, which on O-debromoacetylation afforded the disaccharide nucleophile 10. Similar condensation of 3 with methyl 3-O-benzoyl-4,6-O-benzylidene-alpha-D-galactopyranoside, followed by O-debromoacetylation and condensation of the thus formed methyl O-(2,4-di-O-benzoyl-alpha-L-rhamnopyranosyl)-(1----2)-4,6-O-benzylidene- 3-O-benzoyl-alpha-D-galactopyranoside again with 3, gave the trisaccharide glycoside. Subsequent O-debromoacetylation gave 17, having only HO-3(3) unsubstituted. Silver perchlorate-mediated glycosylations of 1, 10, and 17 with 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha-D-glucopyranosyl chloride afforded, with high alpha stereoselectivity, protected di-, tri-, and tetra-saccharide glycosides. Subsequent hydrogenation, followed by N-acetylation and O-deacylation, afforded three oligosaccharide glycosides having nonreducing terminal 2-acetamido-2-deoxy-alpha-D-glucopyranosyl residues and comprising successively larger portions of the repeating unit of Shigella dysenteriae type 1 O-antigen.  相似文献   

12.
The metabolism of amino sugars in extracts of mouse cells was studied by the use of 2-acetamido-2-deoxy-alpha-D-glucopyranose, 2-acetamido-2-deoxy-alpha-D-manno-pyranose, and N-acetylneuraminic acid as tracers with or without added 0.5mM 2-deoxy-2-(2-fluoroacetamido)-alpha-D-glucopyranosyl pyrophosphate) and cytidine 5'-(N-acetylneuraminyl monophosphate) was inhibited by the fluoro sugar.  相似文献   

13.
The spacer-armed trisaccharide, Neu5Gc-alpha-(2-->3')-lactosamine 3-aminopropyl glycoside, was synthesized by regio- and stereoselective sialylation of the suitably protected triol acceptor, 3-trifluoroacetamidopropyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(6-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside, with the donor methyl [phenyl 5-acetoxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate. The donor was obtained, in turn, from methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate by N-tert-butoxycarbonylation of the acetamido group followed by total N- and O-deacetylation, per-O-acetylation, subsequent Boc group removal, and N-acetoxyacetylation.  相似文献   

14.
Proteases, glycosidases, and lectins were tested and the results supported a role in host recognition for glycoproteins containing β-glucose and α-mannose on the cuticular surface of host and parasite. Carbohydrates containing α-glucose, galactose, fucose, or N-acetylglucosamine residues apparently are not involved in nematode attachment. Chitin or a related N-acetylglucosamine polymer was found in R. culicivorax preparasites. Treatment of preparasites with neuraminidase, which hydrolyzes sialic acids, increased nematode attachment to Anopheles freeborni larvae.  相似文献   

15.
Calf pancreas microsomes incubated with UDP-N-acetyl-D-[14C] glucosamine in the presence of Mn2+ incorporated radioactivity into P1-2-acetamido-2-deoxy-D-glucopyranosyl P2-dolichyl pyrophosphate and P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate. The formation of both glycolipids was enhanced to the same extent by exogenous dolichyl phosphate. Labeled P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate was formed from synthetic P1-2-acetamido-2-deoxy-alpha-D-glucopyranosyl P2-dolichyl pyrophosphate and from prelabeled pancreatic P1-2-acetamido-2-deoxy-alpha-D-glucopyranosyl P2-dolichyl pyrophosphate without the addition of divalent cation. Upon thin layer chromatography, it had the same mobility as synthetic P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate recently synthesized by Warren et al. (Warren, C. D., Herscovics, A., and Jeanloz, R. W. (1977) Carbohydr. Res., in press), but was different from the synthetic compound prepared by Wedgwood et al. (Wedgwood, J. F., Warren, C. D., Jeanloz, R. W., and Strominger, J. L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 5022-5026).  相似文献   

16.
This paper deals with new approaches to alpha-Neu5NAc-(2,6)-D-GalN3 building blocks, suitable as glycosylation donors. The major improvement, by comparison with the results of the literature, lies in the glycosylation step of a new d-galactosamine acceptor (tert-butyldimethylsilyl 3-O-acetyl-2-azido-2-deoxy-beta-D-galactopyranoside) with O-methyl-S-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-non-2-ulopyranosyl)onate] dithiocarbonate as the N-acetylneuraminic acid donor. The reaction affords the expected disaccharide in high yield (85%) and a complete alpha-Neu5NAc stereoselectivity. A subsequent oxidation step, eliminating the glycal by-product allows an easier purification. Afterwards, the tert-butyldimethylsilyl disaccharide can be transformed into a donor, after cleavage of the anomeric group in smooth conditions.  相似文献   

17.
Per-O-benzoylated derivatives (amide, methyl ester and glycinamide) of C-(1-azido-1-deoxy-alpha-D-glucopyranosyl)formic acid obtained by azide substitution in the corresponding C-(1-bromo-1-deoxy-beta-D-glucopyranosyl)formic acid derivatives were debenzoylated by the Zemplén-protocol. Per-O-benzoylated C-(1-azido-1-deoxy-alpha-D-glucopyranosyl)formamide was dehydrated by oxalyl chloride-DMF to give the corresponding nitrile, while from its reduction mixture obtained by Raney-nickel or sodium hydrogentelluride C-(1-amino-1-deoxy-beta-D-glucopyranosyl)formamide could be isolated. Acetylation of this amino-amide by Ac2O/Py and subsequent debenzoylation gave C-(1-acetamido-1-deoxy-beta-D-glucopyranosyl)formamide. Applying the same conditions to the crude reduction mixture allowed the alpha-anomer to be isolated as a minor component. An alternative pathway to produce the above beta-anomer appeared in the reaction of C-(1-bromo-1-deoxy-beta-D-glucopyranosyl)formamide with CH3CN in the presence of Ag2CO3 to yield 1-acetamido-2,3,4,6,-tetra-O-benzoyl-1-deoxy-beta-D-glucopyranosyl cyanide, which was hydrated, in the presence of TiCl4, to the formamide. Some of the new compounds were shown to be weak inhibitors of muscle glycogen phosphorylase b.  相似文献   

18.
The disaccharide 2-(p-aminophenyl)ethyl 4-O-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-2,3-diacetamido-2 ,3-dideoxy-alpha-D-mannopyranoside uronate, which is assumed to be a partial structure of the Bordetella pertussis polysaccharide, was synthesized starting from D-glucose and D-glucosamine, respectively. The major synthetic transformations were conversion of D-glucosamine into the donor ethyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-thio-beta-D-glucopyranoside and conversion of glucose, by a sequence involving 2,3-epoxide formation/opening, nucleophilic triflate displacement in the 3-position, and necessary protecting group manipulations, into the acceptor 2-(p-trifluoroacetamidophenyl)ethyl 6-O-benzyl-2,3-diazido-2,3-dideoxy-alpha-D-mannopyranoside. Coupling of the donor and acceptor units promoted by dimethyl(methylthio)sulfonium triflate followed by selective oxidation of the 6'-position and deprotection gave the target disaccharide.  相似文献   

19.
The rat liver microsomal enzyme CTP: phosphatidate cytidylyltransferase (EC 2.7.7.41) which catalyzes the formation of CDP-diacylglycerol has been found to be markedly stimulated by GTP. The requirement for GTP is absolute, the novel GTP analogues such as guanosine 5′-[β,γ-methylene]-triphosphate, guanosine 5′-[α,β-methylene]-triphosphate, guanosine 5′-[β,γ-imido]-triphosphate and guanosine 3′-diphosphate 5′-diphosphate are without significant effect. Maximal stimulation occurs at 1 mM GTP. ATP at a concentration of 5 mM totally inhibits the formation of CDP-diacylglycerol even in the presence of optimal GTP concentration. Analogues of ATP such as adenosine 5′-[α,β-methylene]-triphosphate, adenosine 5′-[β,γ-methylene]-triphosphate and adenosine 5′-[β,γ-imido]-triphosphate are without effect on the reaction. The addition of fluoride (8 mM) likewise abolishes the stimulatory effect of GTP.  相似文献   

20.
The synthesis of polyfunctionalized delta-lactams as key intermediates of glycomimetics in the 2-acetamido-2-deoxy sugar series is presented. Starting from a chiral gamma-amino vinylic ester synthesized from Garner's aldehyde and after regioselective reduction, 1-azido-3-(N-tert-butyloxycarbonyl-2,2-dimethyloxazolidin-4-yl)-2-propene was obtained. Next, a cis-dihydroxylation reaction provided the protected D-xylitol and L-arabinitol azides. A simple protection-deprotection sequence, followed by an oxidation and a reductive cyclization, led to protected 2-amino-delta-lactams bearing a tert-butyloxycarbonyl group on the amine functionality. To explore the reactivity of such compounds, activation of the lactam into the corresponding thionolactam was performed. The resulting 2-amino-D-xylothionolactam derivative, a versatile intermediate, allowed access to a first generation of protected 2-amino-D-xylosamidoxime derivatives which are of interest as precursors of N-acetylhexosaminidase and N-acetylglucosaminyltransferase inhibitors. In this series of compounds, epimerization at C-2 was observed. AM(1) calculations performed on these analogs showed that they adopted a B(2,5) conformation and that the axial epimer was favored in the protected series whereas the equatorial epimer was preferred in the unprotected series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号