首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

2.
A method has been studied for the determination of the position of the linkage of the 2-acetamido-2-deoxy-D-galactose and 2-acetamido-2-deoxy-D-glucose residues in oligosaccharides and glycoproteins that is based on the borohydride reduction of the reducing terminal residues to the corresponding alditol derivatives periodate oxidation, borohydride reduction, hydrolysis (eventually followed by borohydride reduction), separation of the fragments as per-O-(trimethylsilyl) or per-O-(trifluoroacetyl) derivatives, and identification of the fragments as derivatives of 2-acetamido-2-deoxyglycerol, 2-acetamido-2-deoxy-L-threitol, 2-acetamido-2-deoxy-L-arabinitol, 2-acetamido-2-deoxy-D-xylitol, 2-acetamido-2-deoxy-D-galactitol, and 2-acetamido-2-deoxy-D-glucitol by gas-liquid chromatography-mass spectrometry. New syntheses for the standard compounds 2-acetamido-2-deoxy-L-threitol and 2-acetamido-2-deoxy-D-xylitol are described.  相似文献   

3.
Reaction of p-nitrophenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (3) under the usual conditions, followed by removal of the p-methoxybenzylidene group and O-deacylation, produced crystalline p-nitrophenyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-beta-D-glucopyranoside (6). Starting from p-nitrophenyl 2-acetamido 3,4-di-O-acetyl-2-deoxy-beta-D-glucopyranoside, the synthesis of p-nitrophenyl 2-acetamido-2-deoxy-6-O-beta-D-galactopyranosyl-beta-D-glucopyranoside was also accomplished.  相似文献   

4.
The syntheses of three analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. N-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)succinamide was synthesized by the reaction of pentafluorophenyl succinamate with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosylamine was synthesized, and the complete assignment of the 1H NMR spectrum is given. Reaction of the protected beta-D-glycosylamine with L-malic acid chloralid in the presence of a coupling agent (EEDQ) gave N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-L-malamic acid chloralid that was deprotected two ways: (1) using ammonia, which gave N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-2-hydroxysuccinamide, and (2) using hydrazine, which gave N4-(2-acetamido-2-deoxy-1-D-glucopyranosyl)-L-2-hydroxysuccinamic acid hydrazide.  相似文献   

5.
Hydrogenphosphonate method was used for synthesis of 4-nitrophenyl 2-acetamido-3- and 4-nitrophenyl 2-acetamido-4-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl phosphate)-2-deoxy-beta-D-glucopyranosides. The glycosides, phosphate diester fragments of the title bacteria capsular antigens, were obtained by H-phosphorylation of the suitably protected 2-acetamido-2-deoxy-beta-D-glucopyranosides with 2-acetamido-3,4,6-tri-O-benzoyl-2-deoxy-alpha-D-glucopyranosyl H-phosphonate in the presence of trimethylacetyl chloride followed by oxidation and deprotection.  相似文献   

6.
4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity.  相似文献   

7.
The syntheses of four analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. Activated carboxylic acids were reacted with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. n-Butyric anhydride gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-n-butyramide. 3-Chloropropionic anhydride was synthesized from 3-chloropropionic acid and gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-chloropropionamide. Equilibration of the latter with ammonium bicarbonate gave N1-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-aminopropionamide. Succinimidyl isovalerate was synthesized and gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-isovaleramide.  相似文献   

8.
Oxidation of 5-acetamido-4,8-anhydro-1,2,3,5-tetradeoxy-D-glycero-D-ido-non-1-enitol [3-C-(2-amino-2-deoxy-beta-D-glucopyranosyl)-1-propene] was studied to search for preparative routes to aminodeoxy didehydro nonulosonic acid derivatives. Since only moderate chiral induction was observed with osmium tetroxide dihydroxylation as well as with peracid epoxidation, the catalytic asymmetric dihydroxylation conditions were applied to give the stereocontrolled formation of 1,2-propanediol derivatives. The structures of these diastereoisomeric 1,2-propanediol derivatives were determined by X-ray crystallographic analyses. The formation of diastereoisomeric 1,2-propanediols also varied with the nature of 2-substituent on the aminodoexy glycosyl moiety. Thus 5-acetamido-4,8-anhydro-3,5-dideoxy-D-erythro-L-ido-nonitol [(2S)-3-C-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-1,2-propanediol] was obtained predominantly up to 70% from 3-C-(2-acetamido-2-deoxyglycosyl)-1-propene by the use of ADmixbeta reagent. The (2S)-propanediol derivative was transformed in a five-step reaction sequence to 2,3-didehydro-2,7-dideoxy-N-acetylneuraminic acid.  相似文献   

9.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

10.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

11.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

12.
An extract of bacterial cells Pseudomonas sp. IFO-13309 grown on medium containing 0.1% bovine cornea keratan sulfate of low sulfate content degraded exhaustively bovine cornea keratan sulfate to give 2-acetamido-2-deoxy-beta-D-gluco-pyranosyl 6-sulfate-(1 goes to 3)-D-galactose, isolated by gel filtration on Sephadex G-25 and purified by preparative paper chromatography. This was reduced with sodium borotritide to give 2-acetamido-2-deoxy-beta-D-glucopyranosyl 6-sulfate-(1 goes to 3)-D-[1-3H]galactitol, purified by gel filtration on Sephadex G-15, which was an excellent substrate for the measurement of 2-acetamido-2-deoxy-D-glucose 6-sulfate sulfatase. The reduced, radioactive monosulfated disaccharide was desulfated with methanolic 70mM hydrogen chloride and purified by gel filtration on Sephadex G-15 to give O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1 goes to 3)-D-[1-3H]galactitol, which allowed the measurement of (1 goes to 3)-N-acetyl-beta-D-glucosaminidase. This enzyme may participate in the normal degradation of keratan sulfate.  相似文献   

13.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

14.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

15.
O-(5-Acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2- nonulopyranoxylonic acid)-(2----6)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3) -L-serine, a structural unit occurring in various submaxillary mucins, was synthesized for the first time by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2----6)-3,4-di-O-acetyl-2- azido-2-deoxy-D- galactopyranosyl trichloroacetimidate (13) and N-(benzyloxycarbonyl)-L-serine benzyl ester as the key intermediates. The trichloroacetimidate 13 was prepared by starting from two monosaccharide synthons, namely, allyl 2-azido-2-deoxy-beta-D-galactopyranoside and methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta-D- galacto-2-nonulopyranosyl chloride)onate, which were coupled in the presence of silver triflate in tetrahydrofuran to give the desired alpha-(2----6)-linked disaccharide in moderate selectivity.  相似文献   

16.
The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].  相似文献   

17.
2-Acetamido-3,4-di-Oacetyl-2,6-dideoxy-6-S-acetyl-6-thio-d-glucopyranosyl chloride (III) was condensed with potassium thiolacetate, potassium ethylxanthate or thiourea to give three crystalline derivatives of 2-acetamido-2-deoxy-1,6-dithio-d-glucose. An attempt to prepare 2-acetamido-1,2,6-trideoxy-1,6-dimercapto-D-glucose (VII) from 2-acetamido-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1,6-dithio-β-d-glucopyranose was described. 2-Acetamido-3,4-di-O-acetyl-1,2,6-trideoxy-1-mercapto-6-S-acetyl-6-thio-β-d-glucopyranose (VIII) was synthesized from the condensation product of III with thiourea.  相似文献   

18.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

19.
Two distinct 2-acetamido-2-deoxy-α-D-galactosidases have been separated from filtrates of cultured Clostridium perfringens by electrophoresis in 6.5% poly(acryl-amide) gels. One of the enzymes had a mobility of 0.32-0.36 (relative to Bromophenol Blue) and was identified as the exoglycosidase, 2-acetamido-2-deoxy-α-D-galactosidase. It appears to be the same enzyme as that reported in 1972 by McGuire et al. The second of the two ezymes, having a relative mobility of 0.42-0.46, corresponds to the oligosaccharidase reported in 1972 by Huang and Aminoff. The A-specificities of human type-A erythrocytes and of water-soluble glycoproteins having A-activity are both destroyed by incubation with the 2-acetamido-2-deoxy-α-D-galactosidase, but not on incubation with the oligosaccharidase. A concomitant rise in blood-group O(H) activity, as indicated by the use of a lectin from Ulex europeus, occurred in the A-erythrocytes treated with the exoglycosidase 2-acetamido-2-deoxy-α-D-galactosidase.  相似文献   

20.
Condensation of 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide with benzyl 2-acetamido-3,6-di-O-benzyl-alpha-D-glucopyranoside in dichloromethane-N,N-dimethylformamide, in the presence of tetraethylammonium bromide, diisopropylethylamine, and molecular sieve (halide ion-catalyzed reaction), gave benzyl 2-acetamido-3,6-di-O-benzyl-2 deoxy-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-glucopyranoside in crystalline form in 82% yield. Hydrogenolysis of the benzyl groups gave the title disaccharide, in crystalline form in 90% yield, which was characterized by a crystalline peracetylated alpha-D derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号