首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】类囊体是叶绿体光合作用中光反应进行的重要场所。类囊体腔是由类囊体膜包围形成的一个狭小空间。在类囊体腔中存在多种不同的蛋白家族,包括高叶绿素荧光(high chlorophyll fluorescence, HCF)蛋白、亲免蛋白、放氧复合物(oxygen-evolving complex, OEC)蛋白、PsbP类蛋白等,它们对植物的光合作用、核酸代谢以及氧化还原反应等都起着重要作用。【评论】文章分类综述了参与光合作用调控的类囊体腔蛋白在光系统组装、植物生长发育调节和高光逆境响应等生理活动中发挥的重要作用。【展望】文章可为未来研究类囊体腔蛋白的生理功能提供理论参考。  相似文献   

2.
We report the development of LumenP, a new neural network-based predictor for the identification of proteins targeted to the thylakoid lumen of plant chloroplasts and prediction of their cleavage sites. When used together with the previously developed TargetP predictor, LumenP reaches a significantly better performance than what has been recorded for previous attempts at predicting thylakoid lumen location, mostly due to a lower false positive rate. The combination of TargetP and LumenP predicts around 1.5%-3% of all proteins encoded in the genomes of Arabidopsis thaliana and Oryza sativa to be located in the lumen of the thylakoid.  相似文献   

3.
Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli . This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco ( Nicotiana tabacum ) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.  相似文献   

4.
The assembly of the chloroplast thylakoid membrane requires the import of numerous proteins from the cytosol and their targeting into or across the thylakoid membrane. It is now clear that multiple pathways are involved in the thylakoid-targeting stages, depending on the type of protein substrate. Two very different pathways are used by thylakoid lumen proteins; one is the Sec pathway which has been well-characterised in bacteria, and which involves the threading of the substrate through a narrow channel. In contrast, the more recently characterised twin-arginine translocation (Tat) system is able to translocate fully folded proteins across this membrane. Recent advances on bacterial Tat systems shed further light on the structure and function of this system. Membrane proteins, on the other hand, use two further pathways. One is the signal recognition particle-dependent pathway, involving a complex interplay between many different factors, whereas other proteins insert without the assistance of any known apparatus. This article reviews advances in the study of these pathways and considers the rationale behind the surprising complexity.  相似文献   

5.
VIPP1 has been shown to be required for the proper formation of thylakoid membranes. However, studies on VIPP1 itself, as well as on PspA, its bacterial homolog, suggests that this protein may be involved in a number of additional functions, including protein translocation. The role of VIPP1 in protein translocation in the chloroplast has not been investigated. To this end, we conducted in vitro thylakoid protein transport assays to look at the effect of VIPP1 on the cpTat pathway, which is one of three translocation pathways found in both the chloroplast and its bacterial progenitor. We found that VIPP1 does indeed enhance protein transport through the cpTat pathway by up to 100%. The VIPP1 effect on cpTat activity occurs without interacting with the substrates or components of the translocon, and does not alter the energy potentials driving this translocation pathway. Instead, VIPP1 greatly enhances the amount of substrate bound productively to the thylakoids. Moreover, the presence of increasing VIPP1 concentrations in the reactions resulted in greater interactions between thylakoid membranes. Taken together, these results demonstrate a stimulatory role for VIPP1 in cpTat transport by enhancement of substrate binding, probably to the membrane lipid regions of the thylakoid. We propose a model in which VIPP1 facilitates reorganization of the thylakoid structure to increase substrate access to productive binding regions of the membrane as an early step in the cpTat pathway.  相似文献   

6.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

7.
The complete presequences of the nucleus-encoded precursors to two proteins, cytochrome c6 and the 30-kDa protein of the oxygen-evolving complex, that reside in the thylakoid lumen of the chloroplasts of Euglena gracilis are presented. Sorting of these proteins involves translocation across four membranes, the three-membraned chloroplast envelope and the thylakoid membrane. The tripartite presequences show the structure: signal sequence transit sequence signal sequence. Three hydrophobic domains become apparent: two of them correspond to signal sequences for translocation across the endoplasmic reticulum (ER) membrane and the thylakoid membrane, respectively, whereas the third constitutes the stop-transfer signal contained in the long stroma-targeting part of the tripartite presequence.  相似文献   

8.
9.
Most proteins located in chloroplasts are encoded by nuclear genes, synthesized in the cytoplasm, and transported into the organelle. The study of protein uptake by chloroplasts has greatly expanded over the past few years. The increased activity in this field is due, in part, to the application of recombinant DNA methodology to the analysis of protein translocation. Added interest has also been gained by the realization that the transport mechanisms that mediate protein uptake by chloroplasts, mitochondria and the endoplasmic reticulum display certain characteristics in common. These include amino terminal sequences that target proteins to particular organelles, a transport process that is mechanistically independent from the events of translation, and an ATP-requiring transport step that is thought to involve partial unfolding of the protein to be translocated. In this review we examine recent studies on the binding of precursors to the chloroplast surface, the energy-dependent uptake of proteins into the stroma, and the targeting of proteins to the thylakoid lumen. These aspects of protein transport into chloroplasts are discussed in the context of recent studies on protein uptake by mitochondria.Abbrevlations CAT chloramphenicol acetyl transferase - CCCP carbonylcyanide m-chlorophenylhydrazone - DHFR dihydrofolate reductase - EPSP 5-enol-pyruvylshikimate-3-phosphate - ER endoplasmic reticulum - LHCP light harvesting chlorophyll a/b apoprotein - NPT neomycin phosphotransferase - oATP adenosine-2,3-dialdehyde-5-triphosphate - P-inorganic phosphate Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SSU small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - SRP signal recognition particle  相似文献   

10.
Abstract. The structure of chloroplast membrane proteins and their organization into photosynthetically-active multimeric complexes is described. Extensive use has been made of information derived from gene sequencing and other biochemical studies to predict likely protein conformations. These predictions have been assimilated into structural models of the various thylakoid complexes. The enzymatic activities of the complexes have also been described and where possible related to individual polypeptides.  相似文献   

11.
The thylakoid DeltapH-dependent/Tat pathway is a novel system with the remarkable ability to transport tightly folded precursor proteins using a transmembrane DeltapH as the sole energy source. Three known components of the transport machinery exist in two distinct subcomplexes. A cpTatC-Hcf106 complex serves as precursor receptor and a Tha4 complex is required after precursor recognition. Here we report that Tha4 assembles with cpTatC-Hcf106 during the translocation step. Interactions among components were examined by chemical cross-linking of intact thylakoids followed by immunoprecipitation and immunoblotting. cpTatC and Hcf106 were consistently associated under all conditions tested. In contrast, Tha4 was only associated with cpTatC and Hcf106 in the presence of a functional precursor and the DeltapH. Interestingly, a synthetic signal peptide could replace intact precursor in triggering assembly. The association of all three components was transient and dissipated upon the completion of protein translocation. Such an assembly-disassembly cycle could explain how the DeltapH/Tat system can assemble translocases to accommodate folded proteins of varied size. It also explains in part how the system can exist in the membrane without compromising its ion and proton permeability barrier.  相似文献   

12.
植物叶绿体类囊体膜及膜蛋白研究进展   总被引:5,自引:0,他引:5  
叶绿体是植物和真核藻类进行光合作用的场所。存在于叶绿体类囊体膜上的蛋白质复合物含有光反应所需的光合色素和电子传递链组分,在光合作用过程中,光化学反应发生在类囊体膜上。因此,类囊体膜是光能向化学能转化的主要场所,因而也一直是光合作用研究的热点。叶绿体类囊体膜的深入研究可以促进光合作用的分子机理研究。该文就叶绿体类囊体膜的三维构象及类囊体膜蛋白的组成和功能研究进行了综述。  相似文献   

13.
Aprotinin, a bovine protease inhibitor of important therapeutic value, was expressed in tobacco plastid transformants. This disulphide bond-containing protein was targeted to the lumen of thylakoids using signal peptides derived from nuclear genes which encode lumenal proteins. Translocation was attempted via either the general secretion (Sec) or the twin-arginine translocation (Tat) pathway. In both cases, this strategy allowed the production of genuine aprotinin with its N-terminal arginine residue. The recombinant protease inhibitor was efficiently secreted within the lumen of thylakoids, accumulated in older leaves and was bound to trypsin, suggesting that the three disulphide bonds of aprotinin are correctly folded and paired in this chloroplast compartment. Mass spectrometric analysis indicated that translocation via the Sec pathway, unlike the Tat pathway, led predominantly to an oxidized protein. Translocation via the Tat pathway was linked to a slightly decreased growth rate, a pale-green leaf phenotype and supplementary expression products associated with the thylakoids.  相似文献   

14.
In vitro assays for the import of proteins by isolated pea thylakoids have been refined and optimised with respect to (a) the method of thylakoid preparation, (b) the concentration of thylakoids in the import assay, and (c) the pH and temperature of the import assay. As a result, the 23 kDa and 16 kDa proteins of the photosynthetic oxygen-evolving complex are imported with efficiencies approaching 100%; import of the third oxygen-evolving complex protein is also observed, albeit with lower efficiencies. We have also demonstrated import of three further thylakoid proteins: plastocyanin, the CFoII subunit of the ATP synthase, and the photosystem I subunit, PSI-N, using this import assay. Import of plastocyanin, PSI-N and the 33 kDa oxygen-evolving complex protein subunit requires the presence of stromal extract whereas the other three proteins are efficiently imported in the absence of added soluble proteins. Import into isolated barley thylakoids was achieved under identical assay conditions, although with somewhat lower efficiency than into pea thylakoids.  相似文献   

15.
Protein targeting to plant mitochondria and chloroplasts is usually very specific and involves targeting sequences located at the amino terminus of the precursor. We challenged the system by using combinations of mitochondrial and chloroplast targeting sequences attached to reporter genes. The sequences coding for the presequence of the mitochondrial F1-ATPase -subunit and the transit peptide of the chloroplast chlorophyll a/b-binding protein, both from Nicotiana plumbaginifolia, were fused together in both combinations, then linked to the reporter genes, chloramphenicol acetyl transferase (CAT) and -glucuronidase (GUS), and introduced into tobacco. Analysis of CAT and GUS activities and proteins in the subcellular fractions revealed that the chloroplast transit peptide alone was not sufficient to target the reporter proteins to chloroplasts. However, when the mitochondrial -presequence was inserted downstream of the chloroplast sequence, import of CAT and GUS into chloroplasts was observed. Using the reciprocal system, the mitochondrial presequence alone was able to direct transport of CAT and, to a lesser extent, GUS to mitochondria; the GUS targeting to mitochondria was increased when the chloroplast targeting sequence was linked downstream of the mitochondrial presequence. Immuno-detection experiments using subcellular fractions confirmed the results observed by enzymatic assays. These results indicate the importance of the amino-terminal position of the targeting sequence in determining protein import specificity and are considered within the hypothesis of a co-translational protein import.  相似文献   

16.
Nucleus-encoded chloroplast proteins of vascular plants are synthesized as precursors and targeted to the chloroplast by stroma-targeting domains in N-terminal transit peptides. Transit peptides in Chlamydomonas reinhardtii are considerably shorter than those in vascular plants, and their stroma-targeting domains have similarities to both mitochondrial and chloroplast targeting sequences. To examine Chlamydomonas transit peptide function in vivo, deletions were introduced into the transit peptide coding region of the petE gene, which encodes the thylakoid lumen protein plastocyanin (PC). The mutant petE genes were introduced into a plastocyanin-deficient Chlamydomonas strain, and transformants that accumulated petE mRNA were analyzed for PC accumulation. The most profound defects were observed with deletions at the N-terminus and those that extended into the hydrophobic region in the C-terminal half of the transit peptide. PC precursors were detected among pulse-labeled proteins in transformants with N-terminal deletions, suggesting that these precursors cannot be imported and are degraded in the cytosol. Intermediate PC species were observed in a transformant deleted for part of the hydrophobic region, suggesting that this protein is defective in lumen translocation and/or processing. Thus, despite its shorter length, the bipartite nature of the Chlamydomonas PC transit peptide appears similar to that of lumen-targeted proteins in vascular plants. Analysis of the synthesis, stability, and accumulation of PC species in transformants bearing deletions in the stroma-targeting domain suggests that specific regions probably have distinct roles in vivo. Abbreviations: cyt, cytochrome; ECL, enhanced chemiluminescence; LSU, large subunit; PC, plastocyanin; TP, transit peptide  相似文献   

17.
Many chloroplast proteins are synthesized in the cytoplasm as precursors which contain an amino terminal transit peptide. These precursors are subsequently imported into chloroplast and targeted to one of several organellar locations. This import is mediated by the transit peptide, which is cleaved off during import. We have used the transit peptides of ferredoxin (chloroplast stroma) and plastocyanin (thylakoid lumen) to study chloroplast protein import and intra-organellar routing toward different compartments. Chimeric genes were constructed that encode precursor proteins in which the transit peptides are linked to yeast mitochondrial manganese superoxide dismutase. Chloroplast protein import and localization experiments show that both chimeric proteins are imported into the chloroplast stroma and processed. The plastocyanin transit sequence did not direct superoxide dismutase to the thylakoids; this protein was found in the stroma as an intermediate that still contains part of the plastocyanin transit peptide. The organelle specificity of these chimeric precursors reflected the transit peptide parts of the molecules, because neither the ferredoxin and plastocyanin precursors nor the chimeric proteins were imported into isolated yeast mitochondria.  相似文献   

18.
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.  相似文献   

19.
Abstract. A review is given of the organization and properties of thylakoid membrane proteins and lipids as a basis for understanding the factors which regulate the light reactions of photosynthesis. Particular emphasis is placed on the lateral organization of the major intrinsic multipeptide complexes and on the importance of diffusional processes in controlling the kinetics of electron transport and the distribution of light energy between photosystems 1 and 2.  相似文献   

20.
Summary Experiments were performed to clarify the debate over the entry of circulating proteins into the epididymal lumen by use of the marker horseradish peroxidase (HRP). Epididymal tubules from the caput epididymidis of the rat were immersed in medium TC 199 containing HRP (3.5 mg/ ml) for 5 min to 3 h at 33° C. Sections were examined for the presence of tracer within the epithelial cells by electron microscopy. From 5 min to 3 h, vesicles containing peroxidase reaction products were found throughout the cytoplasm of the principal cells. Vesicles occurred close to both the basal and apical membranes, and many were found opening into the interstitial space and lumen, depending on the length of incubation. By 5 min labelled vesicles were infrequently found in the apical part of the cells. Reaction product was observed in the epididymal lumen adhering to the microvilli from 30 min of incubation onwards. At all periods of incubation peroxidase was present at the base of the epithelium and between the cells, but it was never found within the tight junctional complexes, and no reaction deposits were found within epithelial cells of tubules incubated in the absence of peroxidase. It is concluded that large molecules leaving the capillaries may enter the epididymal lumen in the caput by means of fluid-phase endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号