首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine B-lymphocyte differentiation antigen BP-1/6C3 has been identified as glutamyl aminopeptidase (EAP), the gene symbol for which isENPEP.Using genomic DNA encoding for human EAP as a probe, we identified theENPEPgene location on human chromosome 4q25 by polymerase chain reaction analysis of a human/rodent somatic cell hybrid mapping panel and by fluorescencein situhybridization. Using a radiation hybrid panel, the gene order aroundENPEPwas determined to be centromere–D4S1236–(570 kb)–ENPEP–(210 kb)–D4S262–(270 kb)–D4S953–(270 kb)–D4S474–(570 kb)–IF. The linkage ofENPEPto complement factor I (IF) confirms the human chromosome band 4q25 localization predicted from the chromosomal location of murineENPEP.HumanENPEPthus provides an additional marker for the long arm of chromosome 4 that should facilitate studies of this genomic region.  相似文献   

2.
The humanNBR1cDNA has previously been identified using polyclonal sera to CA125, an ovarian tumor antigen used in monitoring ovarian cancer. The gene was mapped to theBRCA1region on chromosome 17q21 and subsequently found to lie in close proximity to the recently identifiedBRCA1gene. The NBR1 protein has a B-box motif but the function of the protein is as yet unknown. To investigate the function and importance of this gene, we have studied the conservation of this gene in other species and in particular in the mouse. We have isolated murineNbr1cDNA and genomic clones. Translation of the cDNA sequence indicates that the protein is highly conserved, being 89% similar and 84% identical to the human. Analysis of the murineNbr1genomic clones indicates that it maps less than 1 kb from theBrca1gene and that, unlike that in human, this region is not duplicated.  相似文献   

3.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

4.
Chromosomal locations of theAtm(ataxia–telangiectasia (AT)-mutated) andAcat1(mitochondrial acetoacetyl-CoA thiolase) genes in mouse, rat, and Syrian hamster were determined by direct R-banding FISH. Both genes were colocalized to the C-D band of mouse chromosome 9, the proximal end of q24.1 of rat chromosome 8, and qa4–qa5 of Syrian hamster chromosome 12. The regions in the mouse and rat were homologous to human chromosome 11q. Fine genetic linkage mapping of the mouse AT region was performed using the interspecific backcross mice.Atm, Acat1,andNpat,which is a new gene isolated from the AT region, and 12 flanking microsatellite DNA markers were examined. No recombinations were found among theAtm, Npat, Acat1,andD9Mit6loci, and these loci were mapped 2.0 cM distal toD9Mit99and 1.3 cM proximal toD9Mit102.Comparison of the linkage map of mouse chromosome 9 (MMU9) and that of human chromosome 11 (HSA11) indicates that there is a chromosomal rearrangement due to an inversion betweenEts1andAtm–Npat–Acat1and that the inversion of MMU9 originated from the chromosomal breakage at the boundary betweenGria4andAtm–Npat–Acat1on HSA11. This type of inversion appeared to be conserved in the three rodent species, mouse, rat, and Syrian hamster, using additional comparative mapping data with theRckgene.  相似文献   

5.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

6.
Full-length coding sequences of two novel human cadherin cDNAs were obtained by sequence analysis of several EST clones and 5′ and 3′ rapid amplification of cDNA ends (RACE) products. Exons for a third cDNA sequence were identified in a public-domain human genomic sequence, and the coding sequence was completed by 3′ RACE. One of the sequences (CDH7L1, HGMW-approved gene symbol CDH7) is so similar to chicken cadherin-7 gene that we consider it to be the human orthologue. In contrast, the published partial sequence of human cadherin-7 is identical to our second cadherin sequence (CDH7L2), for which we propose CDH19 as the new name. The third sequence (CDH7L3, HGMW-approved gene symbol CDH20) is almost identical to the mouse “cadherin-7” cDNA. According to phylogenetic analysis, this mouse cadherin-7 and its here presented human homologue are most likely the orthologues of Xenopus F-cadherin. These novel human genes, CDH7, CDH19, and CDH20, are localized on chromosome 18q22–q23, distal of both the gene CDH2 (18q11) encoding N-cadherin and the locus of the six desmosomal cadherin genes (18q12). Based on genetic linkage maps, this genomic region is close to the region to which Paget's disease was linked. Interestingly, the expression patterns of these three closely related cadherins are strikingly different.  相似文献   

7.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   

8.
We describe the isolation and characterization of the cDNA for FKHL13, the human homologue of the mouse hepatocyte nuclear factor 3/fork headhomologue 4 (HFH-4) gene, a member of the HNF-3/fork head(also called winged helix) gene family. Members of this gene family contain a conserved DNA binding region of approx. 110 amino acids and are thought to play an important role in cell-specific differentiation. Previous analysis of the mouse and rat HFH-4 cDNAs revealed a distinct pattern of expression for this gene, suggesting that the gene plays an important role in the differentiation of lung and oviduct/ampulla epithelial cells and testicular spermatids. Analysis of the human FKHL13 gene confirmed this pattern of expression. We also found expression in adult human brain cortex, which we were able to confirm for the mouse. The expression pattern of FKHL13/HFH-4, confined to cilia/flagella-producing cells, leads us to believe that the gene plays an important role in the regulation of axonemal structural proteins. We show that the human gene for FKHL13 lies on chromosome 17 (comparison with the chromosomal location of the mouse gene strongly suggests 17q22–q25) and that the gene, which is approx. 6 kb, contains a single intron disrupting thefork headDNA binding domain. Such a disruption of a functional unit provides strong evidence for the theory of intron insertion during gene evolution. The expression of the gene is probably controlled by the CpG island, which is located in the promoter region of the gene. We also demonstrate that the FKHL13 gene is highly conserved among a wide variety of species, including birds.  相似文献   

9.
10.
We previously isolated a cDNA fragment homologous to theDrosophila Bicaudal-Dgene (Bic-D) using a hybridization selection procedure with cosmids derived from the short arm of human chromosome 12. A PCR-mediated cDNA cloning strategy was applied to obtain the coding sequence of the human homologue (BICD1) and to generate a partial mouse (Bicdh1) cDNA. TheDrosophila Bicaudal-Dgene encodes a coiled coil protein, characterized by five α-helix domains and a leucine zipper motif, that forms part of the cytoskeleton and mediates the correct sorting of mRNAs for oocyte- and axis-determining factors during oogenesis. Analysis of the predicted amino acid sequence of theBICD1cDNA clones indicates that the sequence similarity is essentially limited to the amphipatic helices and the leucine zipper, but the conserved order of these domains suggests a similar function of the protein in mammalians. A database search further indicates the existence of a second human homologue on chromosome arm 9q and aCaenorhabditis eleganshomologue. Northern blot analysis indicates that both the human and the murine homologues produce an mRNA species of 9.5 kb expressed in brain, heart, and skeletal muscle and during mouse embryonic development. The conserved structural characteristics of theBICD1protein and its expression in muscle and especially brain suggest thatBICD1is a component of a cytoskeleton-based mRNA sorting mechanism conserved during evolution.  相似文献   

11.
12.
The major larval cuticle protein (LCP) genes I–IV ofDrosophila melanogaster are clustered on the right arm of the second chromosome. By cross-hybridization we cloned the corresponding genes from three different members of theobscura group:D. persimilis, D. pseudoobscura andD. miranda. InD. pseudoobscura andD. persimilis the gene cluster maps to autosome3. In contrast, inD. miranda it was found on theX2 andY sex chromosome. Hence, this exceptional karyotypic situation offers a unique opportunity to analyse the molecular processes underlying the phenomenon of chromosome degeneration. Comparison of LCP genes I–IV in theX2 andY chromosomal region inD. miranda revealed extensive DNA rearrangements at the latter. TheY chromosomal LCP cluster is characterized by DNA insertions which are absent in the correspondingX2 chromosomal DNA, suggesting that these DNA sequences must have invaded this area. In addition, part of the analysedY chromosomal region is duplicated.  相似文献   

13.
14.
The human flavin-containing monooxygenase (FMO) gene family comprises at least five distinct members (FMO1toFMO5) that code for enzymes responsible for the oxidation of a wide variety of soft nucleophilic substrates, including drugs and environmental pollutants. Three of these genes (FMO1, FMO3,andFMO4) have previously been localized to human chromosome 1q, raising the possibility that the entire gene family is clustered in this chromosomal region. Analysis by polymerase chain reaction of DNA isolated from a panel of human–rodent somatic cell hybrids demonstrates that the two remaining identified members of theFMOgene family,FMO2andFMO5,also are located on chromosome 1q.  相似文献   

15.
16.
The mei-41 gene of Drosophila melanogaster plays an essential role in meiosis, in the maintenance of somatic chromosome stability, in postreplication repair and in DNA double-strand break repair. This gene has been cytogenetically localized to polytene chromosome bands 14C4-6 using available chromosomal aberrations. About 60 kb of DNA sequence has been isolated following a bidirectional chromosomal walk that extends over the cytogenetic interval 14C1-6. The breakpoints of chromosomal aberrations identified within that walk establish that the entire mei-41 gene has been cloned. Two independently derived mei-41 mutants have been shown to carry P insertions within a single 2.2 kb fragment of the walk. Since revertants of those mutants have lost the P element sequences, an essential region of the mei-41 gene is present in that fragment. A 10.5 kb genomic fragment that spans the P insertion sites has been found to restore methyl methanesulfonate resistance and female fertility of the mei-41 D3 mutants. The results demonstrate that all the sequences required for the proper expression of the mei-41 gene are present on this genomic fragment. This study provides the foundation for molecular analysis of a function that is essential for chromosome stability in both the germline and somatic cells.This Paper is dedicated to the memory of Professor James B. Boyd  相似文献   

17.
The human BARX2 gene encodes a homeodomain-containing protein of 254 amino acids, which binds optimally to the DNA consensus sequence YYTAATGRTTTTY. BARX2 is highly expressed in adult salivary gland and is expressed at lower levels in other tissues, including mammary gland, kidney, and placenta. The BARX2 gene consists of four exons, and is located on human chromosome 11q25. This chromosomal location is within the minimal deletion region for Jacobsen syndrome, a syndrome including craniosynostosis and other developmental abnormalities. This chromosomal location, along with the reported expression of murine barx2 in craniofacial development, suggests that BARX2 may be causally involved in the craniofacial abnormalities in Jacobsen syndrome.  相似文献   

18.
19.
The murine homologue of the human NFE2L1 basic leucine-zipper gene was isolated from an early embryo library. The deduced amino acid sequence shows 97% identity between the two proteins. Significant sequence similarity is also seen with the p45 subunit of NF-E2 and with the Drosophila CNC protein. Murine Nfe2l1 maps to chromosome 11DE with similar sequences at 7D1–7F1 and 2E4–2G.  相似文献   

20.
The humanPWP2gene is the human homologue of the yeast periodic tryptophan protein 2 (PWP2) gene and is a member of the gene family that contains tryptophan-aspartate (WD) repeats. Genomic sequencing revealed that the humanPWP2gene consists of 21 exons spanning approximately 24 kb and locates just between the two genes EHOC-1 and KNP-I and distal to aNotI site of LJ104 (D21S1460) on chromosome 21q22.3. Analysis of the 5′-flanking DNA sequence revealed that the upstream region of thePWP2gene is associated with a CpG island containing theNotI site of LJ104. SincePWP2is considered to be a candidate for genetic disorders mapped in the 21q22.3 region, the information including nucleotide sequence and genomic organization of thePWP2gene should be invaluable for the mutation analysis of the corresponding genetic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号