首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chalcone synthase is a key enzyme that catalyses the first dedicated reaction of the flavonoid pathway in higher plants. The chs gene and its protein product in rice has been investigated. The presence of a chalcone synthase (CHS) protein in rice seedlings and its developmental stage-specific expression has been demonstrated by western analysis. The chalcone synthase of rice was found to be immunologically similar to that of maize. A rice cDNA clone, Os-chs cDNA, encoding chalcone synthase, isolated from a leaf cDNA library of an indica rice variety Purpleputtu has been mapped to the centromeric region of chromosome 11 of rice. It was mapped between RFLP markers RG2 and RG103. RG2 is the nearest RFLP marker located at a genetic distance of 3.3 cM. Some segments of chromosome 11 of rice including chs locus are conserved on chromosome 4 of maize. The markers, including chs locus on chromosome 11 of rice are located, though not in the same order, on chromosome 4 of maize. Genetic analysis of purple pigmentation in two rice lines, Abhaya and Shyamala, used in the present mapping studies, indicated the involvement of three genes, one of which has been identified as a dominant inhibitor of leaf pigmentation. The Os-chs cDNA shows extensive sequence homology, both for DNA and protein (deduced), to that of maize, barley and also to different monocots and dicots.  相似文献   

2.
3.
Partial nitrate nutrition (PNN) was found to improve rice (Oryza sativa L. var. japonica) growth. However, how PNN is related to photosynthesis in rice cultivars with different nitrogen use efficiency (NUE) is still not clear. Two rice cultivars, Nanguang (high NUE) and Elio (low NUE), were grown under sole NH4 + and PNN at a total nitrogen concentration of 2.86 mM. The dry weight, leaf area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and gas exchange parameters were measured. Nitrogen and Rubisco contents in the newly expanded leaves of cv. Nanguang were similar to those of cv. Elio when only NH4 + was supplemented in the nutrient solution. However, in cv. Nanguang, nitrogen and Rubisco contents increased under PNN than under sole NH4 + nutrition. Higher nitrogen and Rubisco contents were recorded in cv. Nanguang than in cv. Elio under PNN. The ratio of carboxylation efficiency (CE) to Rubisco content in cv. Nanguang was 11 and 14% higher than that in cv. Elio under NH4 + and PNN, respectively. CE was 14% higher in cv. Nanguang than that in cv. Elio. The results suggest that PNN causes an increase in photosynthesis in cv. Nanguang. It is concluded that differences in Rubisco activity, rather than stomatal limitation, are responsible for the differences in photosynthesis between the two cultivars. The presence of nitrate increases Rubisco content in rice with a high NUE, which leads to faster biomass accumulation at later growth stages.  相似文献   

4.
4-Coumarate:coenzyme A (CoA) ligase (4CL, EC 6.2.1.12) in crude enzyme preparation from the developing xylem of black locust (Robinia pseudoacacia) converted sinapate to sinapoyl CoA. The sinapate-converting activity was not inhibited by other cinnamate derivatives, such as p-coumarate, caffeate or ferulate, in the mixed-substrate assay. The crude extract prepared from the developing xylem was separated by anion-exchange chromatography into three different 4CL isoforms. The isoform 4CL1 had a strong substrate preference for p-coumarate, but lacked the activity for ferulate and sinapate. On the other hand, 4CL2 and 4CL3 displayed activity toward sinapate and also possessed high activity toward caffeate as well as p-coumarate. The crude extract from the shoots exhibited a very similar substrate preference to that of the developing xylem; therefore, 4CL2 may be a major isoform in both crude enzyme preparations. These results support the hypothesis that sinapate-converting 4CL isoform is constitutively expressed in lignin-forming cells.  相似文献   

5.
模拟酸雨对农作物种子萌发和幼苗生长的影响   总被引:28,自引:1,他引:28  
研究模拟酸雨对3种农作物种子萌发年和幼苗生长的影响。结果表明:不同pH值(2.5,4.5,5.6)的模拟酸雨对水稻和小麦的种子萌发没有影响,但明显抑制了玉米种子萌发。模拟酸雨条件下,3种农作物幼苗的生长受到抑制,生物量减少,叶绿素和类胡萝卜素含量下降,而叶绿素a/b的变化却不明显。pH4.5和5.6的模拟酸雨对玉米Fv/Fm、光化学猝灭(qP)的影响较小,非光化学猝灭(NPQ)却明显下降,表明酸雨伤害了植物PSⅡ天线对激发能的非辐射耗散能力。  相似文献   

6.
以超高产杂交水稻(Oryza sativa L.)"培矮64S/E32"和多年来大面积推广的杂交稻"汕优63"为材料,研究孕穗后剑叶中C4途径酶和对稳定碳同位素分异作用的变化.结果表明,籽粒灌浆期(移栽后68~75 d)的两个品种剑叶中NADP-MDH活性最高,随后下降;超高产杂交水稻"培矮64S/E32"的NADP-MDH的活性明显高于"汕优63";PEPCase和NADP-ME活性在黄熟期之前的叶片中持续上升.不同生育期的叶片与籽粒的△1aC值相近(19.49‰~19.82‰),在成熟期时较高.超高产水稻"培矮64S/E32"叶片的平均△13C值比"汕优63"高0.43‰.  相似文献   

7.
When seeds of two rice cvs. Ratna and Jaya were germinated under increasing levels of cadmium nitrate (0, 100 and 500 μM) in the medium, a marked decrease in germination percentage was observed with Cd treatments, as compared to controls. There was more absorbed Cd in embryo axes than in endosperms. More uptake resulted with increasing Cd levels in the growth medium in embryo axes. In both rice cultivars, during a germination period of 0 – 120 h, an increased level of protein as well as free amino acids was noted in Cd treatments. Protease activity in general decreased in both embryo axes as well as endosperms due to Cd treatment. In vitro studies showed an enhancement in protease activity in Cd treatments at low Cd levels (50–100 μM), whereas concentrations above this caused inhibition in enzyme activity. Under 500 μM Cd treatments in vivo there was about 30 to 50 percent decline in leucine aminopeptidase (LAP) activity in endosperms, however, carboxypeptidase activity showed a marked increase in endosperms beyond 24 h under Cd treatments. In embryo axes of germinating seeds there was always a decline in peptidase activities, under the influence of cadmium. The leucine amino peptidase and protease activity were always greater in embryo axes in cv. Ratna than cv. Jaya. However, the carboxypeptidase activity was higher in Jaya when compared to Ratna in endosperms under Cd treatments. The results suggest possible suppression of protease and peptidase activities due to Cd treatments in germinating rice seeds leading to altered levels of protein and amino acids.  相似文献   

8.
Maize (Zea mays L.) leaf tissue of cv Bastille and cv Michoacan 12 was extracted with n-hexane. The extracts were bioassayed against 5th instar African armyworm,Spodoptera exempta (Walker)(Lepidoptera: Noctuidae), by feeding the larvae on agar based media or sucrose impregnated glass fibre discs. The hexane extract of the ‘resistant’ cv Bastille exhibited feeding deterrency and toxicity which were not shown by the ‘susceptible’ cv Michoacan 12. The hexane extract of cv Bastille was adsorbed onto silica gel, the solution filtered off and the adsorbed component taken up into ethyl acetate. Bioassay of these fractions indicated that the toxic and deterrent action was retained in the ethyl acetate fraction. Preparative thin layer chromatography of the ethyl acetate fraction isolated two biologically active constituents. These were both growth inhibitors and lethal by ingestion to the 5th instar African armyworm. Implications for resistance in maize varieties to insect pests are discussed.  相似文献   

9.
Activity of a maize ubiquitin promoter in transgenic rice   总被引:27,自引:0,他引:27  
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants.  相似文献   

10.
Isoamylase (EC 3.2.1.68) in rice (Oryza sativa L.) was efficiently purified within a day to homogeneity, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), from developing endosperm by sequential use of Q Sepharose HP anion- exchange chromatography, ammonium sulfate fractionation, and TSKgel G4000SWXL and G3000SWXL gel filtration chromatography. Although the protein exhibited a molecular size of ca. 83 kDa on SDS-PAGE, the apparent size of the native enzyme was approximately 340 and 490 kDa on TSKgel G3000SWXL and G4000SWXL gel filtration chromatograms, respectively, suggesting that rice isoamylase exists in a homo-tetramer to homo-hexamer form in developing endosperm. The purified rice isoamylase was able to debranch glycogen, phytoglycogen and amylopectin but could not attack pullulan. The optimum pH and temperature for isoamylase activity were found to be pH 6.5 to 7.0 and 30 °C, respectively. The enzyme activity was completely inhibited by HgCl2 and p-chloromercuribenzoate at 1 mM. These results indicate that rice isoamylase possesses properties which are distinct from those reported for bacterial isoamylase. Complementary-DNA clones for rice endosperm isoamylase were isolated with a polymerase-chain-reaction product as probe which was generated by primers designed from nucleotides conserved in cDNA for maize Sugary-1 isoamylase (M.G. James et al., 1995, Plant Cell 7: 417–429) and a Pseudomonas amyloderamosa gene encoding isoamylase (A. Amemura et al., 1988, J Biol Chem 263: 9271–9275). The nucleotide sequence and deduced amino acid sequence of the longest clone showed a high similarity to those of maize Surgary-1 isoamylase, but a lesser similarity to those of Pseudomonas amyloderamosa isoamylase. Southern blot analysis and gene mapping analysis indicated that the isoamylase gene exists as a single copy in the rice genome and is located on chromosome 8 of cv. Nipponbare which belongs to the Japonica rice group. Phylogenetic analysis indicated that isoamylases from maize and rice are more closely related to a number of glgX gene products of the blue green alga Synechocystis and various bacteria than to isoamylases from Pseudomonas and Flavobacterium. Hence, it is proposed that glgX proteins are classified as isoamylase-type debranching enzymes. Our tree also showed that all starch- and glycogen-debranching enzymes from plants and bacteria tested can be classified into two distinct types, an isoamylase-type and a pullulanase-type. Received: 29 October 1998 / Accepted: 10 December 1998  相似文献   

11.
Moso bamboo (Phyllostachys pubescens) is one of the world’s most important bamboo species. It has the largest area of all planted bamboo—over two-thirds of the total bamboo forest area—and the highest economic value in China. Moso bamboo is a tetraploid (4x=48) and a special member of the grasses family. Although several genomes have been sequenced or are being sequenced in the grasses family, we know little about the genome of the bambusoids (bamboos). In this study, the moso bamboo genome size was estimated to be about 2034 Mb by flow cytometry (FCM), using maize (cv. B73) and rice (cv. Nipponbare) as internal references. The rice genome has been sequenced and the maize genome is being sequenced. We found that the size of the moso bamboo genome was similar to that of maize but significantly larger than that of rice. To determine whether the bamboo genome had a high proportion of repeat elements, similar to that of the maize genome, approximately 1000 genome survey sequences (GSS) were generated. Sequence analysis showed that the proportion of repeat elements was 23.3% for the bamboo genome, which is significantly lower than that of the maize genome (65.7%). The bamboo repeat elements were mainly Gypsy/DIRS1 and Ty1/Copia LTR retrotransposons (14.7%), with a few DNA transposons. However, more genomic sequences are needed to confirm the above results due to several factors, such as the limitation of our GSS data. This study is the first to investigate sequence composition of the bamboo genome. Our results are valuable for future genome research of moso and other bamboos.  相似文献   

12.
13.
Aims: A sterile red fungus (SRF) isolated from cortices of roots of both wheat (Triticum aestivum cv. Gamenya) and ryegrass (Lolium rigidum cv. Wimmera) was found to protect the hosts from phytopathogens and promote plant growth. In this work, the major secondary metabolites produced by this SRF were analysed, and their antibiotic and plant‐growth‐promoting activities investigated. Methods and Results: Two main compounds, veratryl alcohol (VA) and 4‐(hydroxymethyl)‐quinoline, were isolated from the culture filtrate of the fungus. In antifungal assays, VA inhibited the growth of Sclerotinia sclerotiorum and Pythium irregulare even at low amounts, while high concentrations (>100 μg per plug) of 4‐(hydroxymethyl)‐quinoline were needed. Both metabolites revealed weak inhibition of Rhizoctonia solani. Furthermore, both compounds showed a growth promotion activity on canola (Brassica napus) seedlings used as bioassays. Conclusions: Isolation and characterization of the main secondary metabolites from culture filtrates of a root‐inhabiting sterile fungus are reported. The biological assays indicate that these secondary metabolites may have a role in both plant growth regulation and antifungal activity. Significance and Impact of the Study: This study provides a better understanding of the metabolism of a cortical fungus that may have a useful role in the biological suppression of root‐infecting soil‐borne plant pathogens.  相似文献   

14.
A previous study of maize primary roots under water stress showed pronounced increases in oxalate oxidase activity and apoplastic hydrogen peroxide in the apical region of the growth zone where cell elongation is maintained. We examined whether increased oxalate oxidase activity in water-stressed roots is conserved across diverse lines of maize and rice. The maize lines exhibited varied patterns of activity, with some lines lacking activity in the apical region. Moreover, none of the rice lines showed activity in the apical region. Also, although the genotypic response of root elongation to water stress was variable in both maize and rice, this was not correlated with the pattern of oxalate oxidase activity. Implications of these findings for root growth regulation under water stress are discussed.  相似文献   

15.
Astolfi  S.  De Biasi  M.G.  Passera  C. 《Photosynthetica》2001,39(2):177-181
The effect of sulphur deprivation and irradiance (180 and 750 µmol m–2 s–1) on plant growth and enzyme activities of carbon, nitrogen, and sulphur metabolism were studied in maize (Zea mays L. Pioneer cv. Latina) plants over a 15-d-period of growth. Increase in irradiance resulted in an enhancement of several enzyme activities and generally accelerated the development of S deficiency. ATP sulphurylase (ATPs; EC 2.7.7.4) and o-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular and different pattern as both enzymes exhibited maximum activity after 10 d from the beginning of deprivation period. Hence in maize leaves the enzymes of C, N, and S metabolism were differently regulated during the leaf development by irradiance and sulphur starvation.  相似文献   

16.
The activities of phenylalanine ammonia lyase [PAL; EC 4.3.1.5 [EC] ]and chalcone isomerase [Cl; EC 5.5.1.5 [EC] ] as well as the contentsof anthocyanin and total soluble hydroxyphenolic compounds wereinvestigated in maize (Zea mays L.) and soybean (Glycine maxL.) seedlings 120 h after treatment with the field dose of fiveherbicides from different groups (trifluralin, fluometuron,atrazine, alachlor, and rimsulfuron) having varied modes ofaction. The fresh weight of both species was greatly decreasedby trifluralin followed by fluometuron and atrazine. The dryweight was, in general, only slightly decreased by all the herbicideswith the largest response with trifluralin. On the other hand,the activities of PAL and Cl were greatly enhanced in both speciesby alachlor and rimsulfuron, but decreased by trifluralin. Fluometuroninduced decreases in PAL activity of maize only and decreasedCl activity of maize and soybean seedlings. Moreover, hydroxyphenoliccompounds were increased in both species by alachlor and rimsulfuronand decreased by trifluralin and atrazine. Similarly, anthocyanincontent was increased in both seedlings by alachlor and rimsulfuron,but decreased by trifluralin and fluometuron, whereas atrazinedecreased the anthocyanin content in maize only. The presentresults indicate that stress is maintained by the differentherbicides and confirm the controlling action of PAL and Clon the production of anthocyanin and phenolic compounds duringthe induced state of stress. In addition, dry weight reductionappeared to coincide with the changes in the parameters of secondarymetabolism, suggesting a regulatory role of secondary metabolismon seedling growth. Key words: Herbicides, phenylalanine ammonia lyase, chalcone isomerase, anthocyanin, hydroxyphenolics  相似文献   

17.
Tricin (5,7,4′‐trihydroxy‐3′,5′‐dimethoxyflavone) is a valuable secondary metabolite which is widely present in gramineous plants, including cultivated rice (Oryza sativa L.) (Poaceae). It can defend the rice plant against damage by the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), one of the most important pests of rice. This study was conducted to elucidate the mechanisms of action of tricin on BPH feeding behavior. BPH feeding behavior in resistant (Rathu Heenati, RHT) and susceptible (Taichuang native 1, TN1) rice varieties and artificial diets was monitored using the electrical penetration graph (EPG) technique. Tricin concentrations in leaves of varieties RHT and TN1 were quantitatively analyzed by liquid chromatography, coupled to tandem mass spectrometric techniques. Six (NP and N1‐5) and four (NP, N1, N2, and N4) types of waveforms occurred during feeding on rice plants and artificial diets, respectively. The tricin concentration of rice varieties was correlated with total and average durations of N4. Moreover, EPG data indicated that tricin significantly increased the duration of non‐probing and pathway periods and strongly inhibited phloem ingestion (N4). The inhibition was strongly dose dependent, resulting in complete suppression of activity in the phloem region when the tricin concentration was increased to 1 g l?1. This study revealed that tricin disturbed the feeding behavior of BPH mainly by increasing the non‐probe period and inhibiting phloem ingestion. We confirmed the hypothesis that tricin is a ‘stylet probing stimulant’ of rice planthoppers as proposed in previous studies. The information on the ecological effect of tricin from this study may be useful to clarify the resistance mechanism against BPH of RHT and other tricin‐containing rice varieties.  相似文献   

18.
Metabolites are the intermediate and final products of metabolism, which play essential roles in plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf and seed tissues in maize and rice. Using principal components analysis based on leaf metabolites but not seed metabolites, metabolomics data could be clearly separated for rice Indica and Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible admixture. Rice and maize seed exhibited significant interspecific differences in metabolic variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was also found to be reshaped dramatically from positive to negative correlations, indicative of the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, the leaf was found to harbor much more intense metabolic interactions than the seed. Our result suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing and extending genomic insights concerning which features are responsible for interspecific differentiation in maize and rice.  相似文献   

19.
Moso bamboo (Phyllostachys pubescens) is one of the world's most important bamboo species. It has the largest area of all planted bamboo―over two-thirds of the total bamboo forest area―and the highest economic value in China. Moso bamboo is a tetraploid (4x=48) and a special member of the grasses family. Although several genomes have been sequenced or are being sequenced in the grasses family, we know little about the genome of the bambusoids (bamboos). In this study, the moso bamboo genome size was estimated to be about 2034 Mb by flow cytometry (FCM), using maize (cv. B73) and rice (cv. Nipponbare) as internal references. The rice genome has been sequenced and the maize genome is being sequenced. We found that the size of the moso bamboo genome was similar to that of maize but significantly larger than that of rice. To determine whether the bamboo genome had a high proportion of repeat elements, similar to that of the maize genome, approximately 1000 genome survey sequences (GSS) were generated. Sequence analysis showed that the proportion of repeat elements was 23.3% for the bamboo genome, which is significantly lower than that of the maize ge-nome (65.7%). The bamboo repeat elements were mainly Gypsy/DIRS1 and Ty1/Copia LTR retrotrans-posons (14.7%), with a few DNA transposons. However, more genomic sequences are needed to con-firm the above results due to several factors, such as the limitation of our GSS data. This study is the first to investigate sequence composition of the bamboo genome. Our results are valuable for future genome research of moso and other bamboos.  相似文献   

20.
Two forms of sucrose-phosphate synthase (EC 2.4.1.14) were resolved from leaves of three species, maize (Zea mays L. cv. Pioneer 3184), soybean (Glycine max (L.) Merr., cv. Ransom) and spinach (Spinacia oleracea L. cv. Resistoflay) by hydroxyapatite Ultrogel chromatography, using a 75-mM (designated peak 1) and 250-mM (peak 2) K-phosphate discontinuous-gradient elution. Rechromatography of the two forms showed that they were not readily interconvertible. The distribution of activity between the two forms differed among species and changed during purification of the enzyme. Recovery of peak-1 activity was specifically lowered when maize leaf extracts were prepared in the absence of magnesium, indicating that the two forms may differ in stability. In addition, the forms of the enzyme from maize differed in the extent of glucose-6-phosphate activation. These results provide evidence for the existence of multiple forms of sucrose-phosphate synthase in leaves of different species and that the forms differ in regulatory properties.Abbreviations Fru6P fructose 6-phosphate - Glc6P glucose 6-phosphate - HAU hydroxyapatite Ultrogel - Pi inorganic phosphate - SPS sucrose-phosphate synthase - UDP uridine 5-diphosphate - UDPG uridinediphosphate glucose Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10511 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. Supported in part by USDA Competitive Research Grant No. 85-CRCR-1-1568  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号