首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent inhibitor of the beef heart mitochondrial ATPase 7-chloro-4-nitrobenzo-2-oxa-1,3 diazole inhibits the ATPase of phosphorylating particles prepared from Micrococcus denitrificans. Inhibition of both ATP synthesis and ATP hydrolysis occurs at similar rates, with a similar pH dependence, and in each case the inhibition is relieved by treatment with dithiothreitol. These results are compared with those previously obtained with the mitochondrial ATPase.  相似文献   

2.
3.
Ahmad Z  Senior AE 《FEBS letters》2005,579(2):523-528
alphaArg-376, betaLys-155, and betaArg-182 are catalytically important ATP synthase residues that were proposed to be involved in substrate Pi binding and subsequent steps of ATP synthesis [Senior, A.E., Nadanaciva, S. and Weber, J. (2002) Biochim. Biophys. Acta 1553, 188-211]. Here, it was shown using purified Escherichia coli F(1)-ATPase that whereas Pi protected wild-type from reaction with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, mutations betaK155Q, betaR182Q, betaR182K, and alphaR376Q abolished protection. Therefore, in ATP synthesis initial binding of substrate Pi in open catalytic site betaE is supported by each of these three residues.  相似文献   

4.
5.
6.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1984,764(1):105-113
The F1-ATPase from Mycobacterium phlei is inactivated by dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and quinacrine mustard. The inactivation is both time-and concentration-dependent and in the case of DCCD being more pronounced at acidic pH. The minimum inactivation half-time (t12) for DCCD, NBD-Cl and quinacrine mustard was observed to be 14, 6 and 7 min, respectively. Inactivation of F1-ATPase resulted in the incorporation of [14C]DCCD as well as [14C]NBD-Cl into α and γ subunits. The incorporation of label into α and γ subunits, utilizing [14C]NBD-Cl, was reversible by dithiothreitol. Complete inactivation, by linear extrapolation to zero activity, revealed that 4 mol [14C]DCCD and 4 mol [14C]NBD-Cl bind per mol F1-ATPase. Kinetic and binding studies show that these probes bind to site(s) distinct from ATP-binding site in F1-ATPase from M. phlei.  相似文献   

7.
8.
The synthesis of a new fluorescent cholesterol analog is described. The analog contains a cholesterol nucleus attached via a hydrophilic spacer to N-4-nitrobenzo-2-oxa-1,3-diazole. Since the cholesterol moiety is not perturbed this molecule probably interacts with lipid bilayers in much the same way as cholesterol itself does. The compound can be readily incorporated into small unilamellar vesicles by sonicating a mixture of it with egg yolk phosphatidylcholine in a buffer. Furthermore, the analog can be incorporated into preformed membranes either by exchange from vesicles containing the analog or by uptake from sonicated micelles of the analog. Thus this analog shows potential as a useful tool for studying the interactions of cholesterol with cell membranes.  相似文献   

9.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   

10.
11.
R. Gregory  D. Recktenwald  B. Hess 《BBA》1981,635(2):284-294
In common with the F1-ATPase from other sources, yeast mitochondrial F1-ATPase was inhibited by 4-chloro-7-nitrobenzofurazan. Total inhibition of the F1-ATPase activity was compatible with the modification of a single tyrosine residue per F1-ATPase molecule. Radioactive labelling experiments localized this modification on a β-subunit. The inactive modified enzyme retained the capacity to bind the photoaffinity label 8-azido-1,N6-etheno-ATP, which has previously been shown to bind nucleotide sites of low affinity. As well, the inactive modified enzyme bound MgATP with high affinity, yielding a Kd of 14 μM. The results are consistent with the hypothesis of alternating, or cooperative, site catalysis by F1-ATPase.  相似文献   

12.
13.
Zeng QY  Wang XR 《FEBS letters》2005,579(12):2657-2662
Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-binding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that Ile54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability.  相似文献   

14.
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The structural organization and overall dimensions of the Escherichia coli F1-ATPase in solutionhas been analyzed by synchroton X-ray scattering. Using an independent ab initio approach,the low-resolution shape of the hydrated enzyme was determined at 3.2 nm resolution. Theshape permitted unequivocal identification of the volume occupied by the 3 3 complex ofthe atomic model of the ECF1-ATPase. The position of the ^ and subunits were found byinteractive fitting of the solution scattering data and by cross-linking studies. Laser-inducedcovalent incorporation of 2-azido-ATP established a direct relationship between nucleotidebinding affinity and the different interactions between the stalk subunits and with the threecatalytic subunits () of the F1-ATPase. Mutants of the ECF1-ATPase with the introductionof Trp-for-Tyr replacement in the catalytic site of the complex made it possible to monitorthe activated state for ATP synthesis (ATP conformation) in which the and subunits arein close proximity to the subunits and the ADP conformation, with the stalk subunits arelinked to the subunit.  相似文献   

16.
R Pougeois  G J Lauquin 《Biochemistry》1985,24(4):1020-1024
The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (Pi) [Lauquin, G., Pougeois, R., & Vignais, P. V. (1980) Biochemistry 19, 4620-4626], could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca2+-ATPase in the presence of Ca2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase [Grubmeyer, C., & Penefsky, H. (1981) J. Biol. Chem. 256, 3718-3727], abolished Pi binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites.  相似文献   

17.
B Norling  B Hamasur  E Glaser 《FEBS letters》1987,223(2):309-314
Cross-reconstitution of isolated potato mitochondrial F1-ATPase with F1-depleted beef heart and yeast submitochondrial particles is reported. Potato F1 binds to the heterologous membrane and confers oligomycin sensitivity on the ATPase activity of the reconstituted system. Binding of F1 is promoted by the presence of Mg2+ with the maximal stimulatory effect at 20 mM. Mg2+ increase the sensitivity to oligomycin of the reconstituted system consisting of potato F1 and yeast membranes, however, they do not influence oligomycin sensitivity of potato F1 and beef heart membranes.  相似文献   

18.
A sensitive and specific HPLC method has been developed for the assay of vigabatrin in human plasma and urine. The assay involves derivatization with 4-chloro-7-nitrobenzofurazan, solid-phase extraction on a silica column and isocratic reversed-phase chromatography with fluorescence detection. Aspartam was used as an internal standard. The assay was linear over the concentration range of 0.2–20.0 μg/ml for plasma and 1.0–15.0 μg/ml for urine with a lower limit of detection of 0.1 μg/ml using 0.1 ml of starting volume of the sample. Both the within-day and day-to-day reproducibilities and accuracies were less than 5.46% and 1.6%, respectively. After a single oral dose of 500 mg of vigabatrin, the plasma concentration and the cumulative urinary excretion of the drug were determined.  相似文献   

19.
Beef heart mitochondrial F1-ATPase was inactivated by the 2',3'-dialdehyde derivatives of ATP, ADP and AMP (oATP, oADP, oAMP). In the absence of Mg2+, inactivation resulted from the binding of 1 mol nucleotide analog per active unit of F1. The most efficient analog was oADP, followed by oAMP and oATP. Complete inactivation was correlated with the binding of about 11 mol [14C]oADP/mol F1. After correction for non-specific labeling, the number of specifically bound [14C]oADP was 2-3 mol per mol F1. By SDS-polyacrylamide gel electrophoresis, [14C]oADP was found to bind covalently mainly to the alpha and beta subunits. In the presence of Mg2+, oATP behaved as a substrate and was slowly hydrolyzed.  相似文献   

20.
J Weber  R S Lee  E Grell  A E Senior 《Biochemistry》1992,31(22):5112-5116
(1) Previous mutational analyses have shown that residue beta R398 of the beta-subunit is a key residue for binding of the inhibitory antibiotic aurovertin to Escherichia coli F1Fo-ATP synthase. Here, we studied purified F1 from the beta R398C and beta R398W mutants. ATPase activity in both cases was resistant to aurovertin inhibition. The fluorescence spectrum (lambda exc = 278 or 295 nm) of beta R398W F1 showed a significant red-shift as compared to wild-type and beta R398C enzymes, indicating that residue beta R398 lies in a polar environment. On the basis of this and previous evidence, we propose that aurovertin binding to F1-ATPase involves a specific charged donor-acceptor H-bond between residue beta R398 and the 7-hydroxyl group of aurovertin. (2) The fluorescent substrate analog lin-benzo-ADP was shown to bind to beta R398W F1 catalytic sites with the same Kd values as to wild-type F1, and with the same quenching of the fluorescence of the analog. Fluorescence energy transfer was seen between the beta R398W residue and bound lin-benzo-ADP. Analysis of transfer efficiency at varying stoichiometry of bound lin-benzo-ADP showed that interaction occurred between one beta R398W residue and one catalytic-site-bound analog molecule at a distance of approximately 23 A. The relationships of the aurovertin and catalytic sites in the primary and tertiary structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号