首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G L Dianov  B R Jensen  M K Kenny  V A Bohr 《Biochemistry》1999,38(34):11021-11025
Base excision repair (BER) pathway is the major cellular process for removal of endogenous base lesions and apurinic/apyrimidinic (AP) sites in DNA. There are two base excision repair subpathways in mammalian cells, characterized by the number of nucleotides synthesized into the excision patch. They are the "single-nucleotide" (one nucleotide incorporated) and the "long-patch" (several nucleotides incorporated) BER pathways. Proliferating cell nuclear antigen (PCNA) is known to be an essential factor in long-patch base excision repair. We have studied the role of replication protein A (RPA) in PCNA-dependent, long-patch BER of AP sites in human cell extracts. PCNA and RPA were separated from the other BER proteins by fractionation of human whole-cell extract on a phosphocellulose column. The protein fraction PC-FII (phosphocellulose fraction II), which does not contain RPA and PCNA but otherwise contains all core BER proteins required for PCNA-dependent BER (AP endonuclease, DNA polymerases delta, beta and DNA ligase, and FEN1 endonuclease), had reduced ability to repair plasmid DNA containing AP sites. Purified PCNA or RPA, when added separately, could only partially restore the PC-FII repair activity of AP sites. However, additions of both proteins together greatly stimulated AP site repair by PC-FII. These results demonstrate a role for RPA in PCNA-dependent BER of AP sites.  相似文献   

2.
Ionizing radiation induces clustered DNA damage, which presents a challenge to the cellular repair machinery. The repair efficiency of a single-strand break (SSB) is ~4× less than that for repair of an abasic (AP) site when in a bistranded cluster containing 8-oxoG. To explore whether this difference in repair efficiency involves XRCC1 or other BER proteins, synthetic oligonucleotides containing either an AP site or HAP1-induced SSB (HAP1-SSB) 1 or 5 bp 5′ or 3′ to 8-oxoG on the opposite strand were synthesized and the repair investigated using either nuclear extracts from hamster cells proficient (AA8) or deficient (EM7) in XRCC1 or purified BER proteins. XRCC1 is important for efficient processing of an AP site in clustered damage containing 8-oxoG but does not affect the already low repair efficiency of a SSB. Ligase I partly compensates for the absence of the XRCC1/ligaseIII during short-patch BER of an AP site when in a cluster but only weakly if at all for a HAP1-SSB. The major difference between the repair of an AP site and a HAP1-SSB when in a 8-oxoG containing cluster is the greater efficiency of short-patch BER with the AP site compared with that for a HAP1-SSB.  相似文献   

3.
A major DNA lesion induced by ionizing radiation and formed on removal of oxidized base lesions by various glycosylases is an apurinic/apyrimidinic site (AP site). The presence of an AP site within clustered DNA damage, induced following exposure to ionizing radiation or radiomimetic anticancer agents, may present a challenge to the repair machinery of the cell, if the major human AP endonuclease, HAP1, does not efficiently incise the AP site. In this study, specific oligonucleotide constructs containing an AP site located at several positions opposite to another damage [5,6-dihydrothymine (DHT), 8-oxoG, AP site, or various types of single strand breaks] on the complementary strand were used to determine the relative efficiency of the purified HAP1 protein in incising an AP site(s) from clustered DNA damage. A base damage (DHT and 8-oxoG) on the opposite strand has little or no influence on the rate of incision of an AP site by HAP1. In contrast, the presence of either a second AP site or various types of single strand breaks, when located one or three bases 3' to the base opposite to the AP site, has a strong inhibitory effect on the efficiency of incision of an AP site. The efficiency of binding of HAP1 to an AP site is reduced by approximately 1 order of magnitude if a single strand break (SSB) is located one or three bases 3' to the site opposite to the AP site on the complementary strand. If the AP site and either a SSB or a second AP site are located at any of the other positions relative to each other, a double strand break may result.  相似文献   

4.
A major DNA lesion is the strongly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) base, formed by oxidative attack at guanine and which leads to a high level of G.C-->T.A transversions. Clustered DNA damages are formed in DNA following exposure to ionizing radiation or radiomimetic anticancer agents and are thought to be biologically severe. The presence of 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell, if the OGG1 DNA glycosylase/AP lyase protein, present in eukaryotic cells, does not efficiently excise its substrate, 8-oxoG. In this study, specific oligonucleotide constructs containing an 8-oxoG located in several positions opposite to another damage (5,6-dihydrothymine (DHT), uracil, 8-oxoG, AP site, or various types of single strand breaks) were used to determine the relative efficiency of purified human OGG1 and mammalian XRS5 nuclear extracts to excise 8-oxoG from clustered damages. A base damage (DHT, uracil, and 8-oxoG) on the opposite strand has little or no influence on the rate of excision of 8-oxoG whereas the presence of either an AP site or various types of single strand breaks has a strong inhibitory effect on the formation of a SSB due to the excision of 8-oxoG by both hOGG1 and the nuclear extract. The binding of hOGG1 to 8-oxoG is not significantly affected by the presence of a neighboring lesion.  相似文献   

5.
DNA damage frequently leads to the production of apurinic/apyrimidinic (AP) sites, which are presumed to be repaired through the base excision pathway. For detailed analyses of this repair mechanism, a synthetic analog of an AP site, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), has been employed in a model system. Tetrahydrofuran residues are efficiently repaired in a Xenopus laevis oocyte extract in which most repair events involve ATP-dependent incorporation of no more than four nucleotides (Y. Matsumoto and D. F. Bogenhagen, Mol. Cell. Biol. 9:3750-3757, 1989; Y. Matsumoto and D. F. Bogenhagen, Mol. Cell. Biol. 11:4441-4447, 1991). Using a series of column chromatography procedures to fractionate X. laevis ovarian extracts, we developed a reconstituted system of tetrahydrofuran repair with five fractions, three of which were purified to near homogeneity: proliferating cell nuclear antigen (PCNA), AP endonuclease, and DNA polymerase delta. This PCNA-dependent system repaired natural AP sites as well as tetrahydrofuran residues. DNA polymerase beta was able to replace DNA polymerase delta only for repair of natural AP sites in a reaction that did not require PCNA. DNA polymerase alpha did not support repair of either type of AP site. This result indicates that AP sites can be repaired by two distinct pathways, the PCNA-dependent pathway and the DNA polymerase beta-dependent pathway.  相似文献   

6.
DNA excision repair in mammalian cell extracts.   总被引:3,自引:0,他引:3  
The many genetic complementation groups of DNA excision-repair defective mammalian cells indicate the considerable complexity of the excision repair process. The cloning of several repair genes is taking the field a step closer to mechanistic studies of the actions and interactions of repair proteins. Early biochemical studies of mammalian DNA repair in vitro are now at hand. Repair synthesis in damaged DNA can be monitored by following the incorporation of radiolabelled nucleotides. Synthesis is carried out by mammalian cell extracts and is defective in extracts from cell lines derived from individuals with the excision-repair disorder xeroderma pigmentosum. Biochemical complementation of the defective extracts can be used to purify repair proteins. Repair of damage caused by agents including ultraviolet irradiation, psoralens, and platinating compounds has been observed. Neutralising antibodies against the human single-stranded DNA binding protein (HSSB) have demonstrated a requirement for this protein in DNA excision repair as well as in DNA replication.  相似文献   

7.
During the base excision repair of certain DNA lesions, the formamidopyrimidine-DNA glycosylase (Fpg) binds specifically to the DNA region containing an abasic (AP) site. Is this step affected by exposure to ionizing radiation? To answer this question, we studied a complex between a DNA duplex containing an analogue of an abasic site (the 1,3-propanediol site, Pr) and a mutated Lactococcus lactis Fpg (P1G-LlFpg) lacking strand cleavage activity. Upon irradiation of the complex, the ratio of bound/free partners decreased. When the partners were irradiated separately, the irradiated DNA still bound the unirradiated protein, whereas irradiated Fpg no longer bound unirradiated DNA. Thus irradiation hinders Fpg-DNA binding because of the damage to the protein. Using our radiolytic attack simulation procedure RADACK (Begusova et al., J. Biomol. Struct. Dyn. 19, 141-157, 2001), we reveal the potential hot spots for damage in the irradiated protein. Most of them are essential for the interaction of Fpg with DNA, which explains the radiation-induced loss of binding ability of Fpg. The doses necessary to destroy the complex are higher than those inactivating Fpg irradiated separately. As confirmed by our calculations, this can be explained by the partial protection of the protein by the bound DNA.  相似文献   

8.
Reactive oxygen species produce a wide spectrum of DNA damage, including oxidative base damage and abasic (AP) sites. Many procedures are available for the quantification and detection of base damage and AP sites. However, either these procedures are laborious or the starting materials are difficult to obtain. A biotinylated aldehyde-specific reagent, ARP, has been shown to react specifically with the aldehyde group present in AP sites, resulting in biotin-tagged AP sites in DNA. The biotin-tagged AP sites can then be determined colorimetrically with an ELISA-like assay, using avidin/biotin-conjugated horseradish peroxidase as the indicator enzyme. The ARP assay is thus a simple, rapid, and sensitive method for the detection of AP sites in DNA. Furthermore, removal of damaged base by DNA N-glycosylases generates AP sites that can be measured by the ARP reagent. By coupling the ARP assay with either endonuclease III from Escherichia coli or 8-oxoguanine N-glycosylase (OGG1) from yeast, investigators can rapidly determine the amount of oxidative pyrimidine damage (endonuclease III-sensitive sites) or purine damage (OGG1-sensitive sites) in cellular DNA, respectively. An increased level of oxidative damage has been implicated in several age-related human diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as the aging process. The sensitivity and simplicity of the ARP assay thus make it a valuable method for investigators who are interested in estimating the level of oxidative DNA damage in cells and tissues derived from patients with various age-related diseases or cancers.  相似文献   

9.
DNA polymerase eta (Pol eta) bypasses a cis-syn thymine-thymine dimer efficiently and accurately, and inactivation of Pol eta in humans results in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Also, Pol eta bypasses the 8-oxoguanine lesion efficiently by predominantly inserting a C opposite this lesion, and it bypasses the O(6)-methylguanine lesion by inserting a C or a T. To further assess the range of DNA lesions tolerated by Pol eta, here we examine the bypass of an abasic site, a prototypical noninstructional lesion. Steady-state kinetic analyses show that both yeast and human Pol eta are very inefficient in both inserting a nucleotide opposite an abasic site and in extending from the nucleotide inserted. Hence, Pol eta bypasses this lesion extremely poorly. These results suggest that Pol eta requires the presence of template bases opposite both the incoming nucleotide and the primer terminus to catalyze efficient nucleotide incorporation.  相似文献   

10.
The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residue in the certain position were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. Digestion with uracil DNA glycosylase was utilized to generate an AP site which was then hydrolyzed by APE1, and the resulting gap was processed by X-family DNA polymerases β (Polβ) and λ (Polλ), or Y-family polymerase ι (Polι). By varying reaction conditions, namely, Mg2+/Mn2+ replacement/combination and ionic strength decrease, we found that under certain conditions both Polβ and Polι can catalyze lesion bypass across both cis- and trans-BP adducts in the presence of physiological dNTP concentrations. Polβ and Polι catalyze gap filling trans-lesion synthesis in an error prone manner. By contrast, Polλ selectively introduced the correct dCTP opposite the modified dG in the case of cis-BP-dG adduct only, and did not bypass the stereoisomeric trans-adduct under any of the conditions examined. The results suggest that Polλ is a specialized polymerase that can process these kinds of lesions.  相似文献   

11.
DNA interstrand cross-links are induced by many carcinogens and anticancer drugs. It was previously shown that mammalian DNA excision repair nuclease makes dual incisions 5' to the cross-linked base of a psoralen cross-link, generating a gap of 22 to 28 nucleotides adjacent to the cross-link. We wished to find the fates of the gap and the cross-link in this complex structure under conditions conducive to repair synthesis, using cell extracts from wild-type and cross-linker-sensitive mutant cell lines. We found that the extracts from both types of strains filled in the gap but were severely defective in ligating the resulting nick and incapable of removing the cross-link. The net result was a futile damage-induced DNA synthesis which converted a gap into a nick without removing the damage. In addition, in this study, we showed that the structure-specific endonuclease, the XPF-ERCC1 heterodimer, acted as a 3'-to-5' exonuclease on cross-linked DNA in the presence of RPA. Collectively, these observations shed some light on the cellular processing of DNA cross-links and reveal that cross-links induce a futile DNA synthesis cycle that may constitute a signal for specific cellular responses to cross-linked DNA.  相似文献   

12.
Anthraquinone and naphthalene diimide intercalators with amine-containing side chains cleave plasmid DNA at abasic sites (apurinic or apyrimidinic (AP) sites). The intercalator-amine is substantially more effective than the amine itself; many intercalators with diamine side chains cleave most of the abasic sites at micromolar concentration (30 min at 37 degrees C). Intercalators with two amino moieties in the side chain are more efficient than those with one, arguing for a role for each of two amines in the cleavage mechanism. Side chains ending in tertiary amines are somewhat more effective than those ending in primary amines, indicating that imine formation is not required for cleavage at the abasic site. We also report a systematic study of abasic site cleavage by polyamines, including piperidine, spermine, spermidine and 12 other di-, tri- and tetra-amines. For polyamines as well as intercalator-amines, examples with three carbon atoms between neighboring nitrogens atoms cleave most efficiently. This may reflect a particularly favorable geometry for proton abstraction for these species. The effect of nitrogen-nitrogen spacing on the pKa values of the nitrogens may contribute as well. Overall, cleavage of plasmid DNA at adventitious abasic sites by intercalator-amines bearing two nitrogens in a single side chain occurs readily.  相似文献   

13.
Recognition of oxidized abasic sites by repair endonucleases.   总被引:4,自引:3,他引:4       下载免费PDF全文
The recognition of 'regular' and 'oxidized' sites of base loss (AP sites) in DNA by various AP endonucleases was compared. Model substrates with regular AP sites (resulting from mere hydrolysis of the glycosylic bond) were produced by damaging bacteriophage PM2 DNA by exposure to low pH; those with AP sites oxidized at the C-4'- and C-1'-position of the sugar moiety by exposure to Fe(III)-bleomycin in the presence of H2O2 and to Cu(II)-phenanthroline in the presence of H2O2 and ethanol, respectively. The results confirmed that AP sites-together with single-strand breaks-are indeed the predominant type of DNA modification in all three cases. For the recognition of 4'-oxidized AP sites, a 400-fold higher concentration of Escherichia coli exonuclease III and between 5-fold and 50-fold higher concentrations of bacteriophage T4 endonuclease V, E. coli endonuclease III and E. coli FPG protein were required than for the recognition of regular AP sites. In contrast, the recognition of 4'-oxidized AP sites by E. coli endonuclease IV was effected by 4-fold lower concentrations than needed for regular AP sites. 1'-oxidized AP sites (generated by activated Cu(II)-phenanthroline) were recognized by endonuclease IV and exonuclease III only slightly (3-fold and 13-fold, respectively) less efficiently than regular AP sites. In contrast, there was virtually no recognition of 1'-oxidized AP sites by the enzymes which cleave at the 3' side of AP sites (T4 endonuclease V, endonuclease III and FPG protein). The described differences were exploited for the analysis of the DNA damage induced by hydroxyl radicals, generated by ionizing radiation or Fe(III)-nitrilotriacetate in the presence of H2O2. The results indicate that both regular and 1'-oxidized AP sites represent only minor fractions of the AP sites induced by hydroxyl radicals.  相似文献   

14.
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1–5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC→TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.  相似文献   

15.
DNA loop repair by Escherichia coli cell extracts   总被引:2,自引:0,他引:2  
The nick-directed DNA repair efficiency of a set of M13mp18-derived heteroduplexes containing 8-, 12-, 16-, 22-, 27-, 45-, and 429-nucleotide loops was determined by in vitro assay. Unpaired nucleotides of each heteroduplex reside within overlapping recognition sites for two restriction endonucleases, permitting independent evaluation of repair occurring on either DNA strand. Our results show that a strand break located either 3' or 5' to the loop is sufficient to direct heterology repair to the nicked strand in Escherichia coli extracts. Strand-specific repair by this system requires Mg2+ and the four dNTPs and is equally efficient on insertions and deletions. This activity is distinct from the MutHLS mismatch repair pathway. Strand specificity and repair efficiency are largely independent of the GATC methylation state of the DNA and presence of the products of mismatch repair genes mutH, mutL, and mutS. This study provides evidence for a loop repair pathway in E. coli that is distinct from conventional mismatch repair.  相似文献   

16.
To study the interaction of poly(ADP-ribose) polymerase 1 (PARP1) with apurinic/apyrimidinic sites (AP sites) within clustered damages, DNA duplexes were created that contained an AP site in one strand and one of its analogs situated opposite the AP site in the complementary strand. Residues of 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), diethylene glycol (DEG), and decane-1,10-diol (DD) were used. It is shown for the first time that apurinic/apyrimidinic endonuclease 1 (APE1) cleaves the DNA strands at the positions of DEG and DD residues, and this suggests these groups as AP site analogs. Insertion of DEG and DD residues opposite an AP site decreased the rate of AP site hydrolysis by APE1 similarly to the effect of the THF residue, which is a well-known analog of the AP site, and this allowed us to use such AP DNAs to imitate DNA with particular types of clustered damages. PARP1, isolated and in cell extracts, efficiently interacted with AP DNA with analogs of AP sites producing a Schiff base. PARP1 competes with APE1 upon interaction with AP DNAs, decreasing the level of its cross-linking with AP DNA, and inhibits hydrolysis of AP sites within AP DNAs containing DEG and THF residues. Using glutaraldehyde as a linking agent, APE1 is shown to considerably decrease the amount of AP DNA-bound PARP1 dimer, which is the catalytically active form of this enzyme. Autopoly(ADP-ribosyl)ation of PARP1 decreased its inhibitory effect. The possible involvement of PARP1 and its automodification in the regulation of AP site processing within particular clustered damages is discussed.  相似文献   

17.
Repair of abasic sites in DNA   总被引:12,自引:0,他引:12  
Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions.  相似文献   

18.
The major enzyme in eukaryotic cells that catalyzes the cleavage of apurinic/apyrimidinic (AP or abasic) sites is AP endonuclease 1 (APE1) that cleaves the phosphodiester bond on the 5′-side of AP sites. We found that the efficiency of AP site cleavage by APE1 was affected by the benzo[a]pyrenyl-DNA adduct (BPDE-dG) in the opposite strand. AP sites directly opposite of the modified dG or shifted toward the 5′ direction were hydrolyzed by APE1 with an efficiency moderately lower than the AP site in the control DNA duplex, whereas AP sites shifted toward the 3′ direction were hydrolyzed significantly less efficiently. For all DNA structures except DNA with the AP site shifted by 3 nucleotides in the 3′ direction (AP+3-BP-DNA), hydrolysis was more efficient in the case of (+)-trans-BPDE-dG. Using molecular dynamic simulation, we have shown that in the complex of APE1 with the AP+3-BP-DNA, the BP residue is located within the DNA bend induced by APE1 and contacts the amino acids in the enzyme catalytic center and the catalytic metal ion. The geometry of the APE1 active site is perturbed more significantly by the trans-isomer of BPDE-dG that intercalates into the APE1-DNA complex near the cleaved phosphodiester bond. The ability of DNA polymerases β (Polβ), λ and ι to catalyze gap-filling synthesis in cooperation with APE1 was also analyzed. Polβ was shown to inhibit the 3′  5′ exonuclease activity of APE1 when both enzymes were added simultaneously and to insert the correct nucleotide into the gap arising after AP site hydrolysis. Therefore, further evidence for the functional cooperation of APE1 and Polβ in base excision repair was obtained.  相似文献   

19.
Sung JS  Demple B 《The FEBS journal》2006,273(8):1620-1629
Base excision DNA repair (BER) is fundamentally important in handling diverse lesions produced as a result of the intrinsic instability of DNA or by various endogenous and exogenous reactive species. Defects in the BER process have been associated with cancer susceptibility and neurodegenerative disorders. BER funnels diverse base lesions into a common intermediate, apurinic/apyrimidinic (AP) sites. The repair of AP sites is initiated by the major human AP endonuclease, Ape1, or by AP lyase activities associated with some DNA glycosylases. Subsequent steps follow either of two distinct BER subpathways distinguished by repair DNA synthesis of either a single nucleotide (short-patch BER) or multiple nucleotides (long-patch BER). As the major repair mode for regular AP sites, the short-patch BER pathway removes the incised AP lesion, a 5'-deoxyribose-5-phosphate moiety, and replaces a single nucleotide using DNA polymerase (Polbeta). However, short-patch BER may have difficulty handling some types of lesions, as shown for the C1'-oxidized abasic residue, 2-deoxyribonolactone (dL). Recent work indicates that dL is processed efficiently by Ape1, but that short-patch BER is derailed by the formation of stable covalent crosslinks between Ape1-incised dL and Polbeta. The long-patch BER subpathway effectively removes dL and thereby prevents the formation of DNA-protein crosslinks. In coping with dL, the cellular choice of BER subpathway may either completely repair the lesion, or complicate the repair process by forming a protein-DNA crosslink.  相似文献   

20.
DNA from plasmid pUC18 was irradiated with low-LET (13 keV/μm) or high-LET (60 keV/μm) carbon ions or X-rays (4 keV/μm) in solutions containing several concentrations of Tris (0.66–200 mM) to determine the yield of abasic (AP) sites and the effect of scavenging capacity. The yield of AP sites, detected as single-strand breaks (SSB) after digestion with E. coli endonuclease IV (Nfo), was compared with that of SSB and base lesions. At higher concentrations of Tris, the yields of single or clustered AP sites were significantly lower than those of single or clustered base lesions. The relative yields of single AP sites and AP clusters were less than 10 and 7 %, respectively, of the total damage produced at a scavenger capacity mimicking that in cells. The dependence of the yield of AP sites on scavenging capacity was similar to that of prompt strand breaks. The ratios of the yield of isolated AP sites to that of SSB induced by carbon ion or X-ray irradiation were relatively constant at 0.45 ± 0.15 over the tested range of scavenger capacity, although the ratio of SSB to double-strand breaks (DSB) showed the characteristic dependence on both scavenging capacity and radiation quality. These results indicate that the reaction of water radiolysis products, presumably OH radicals, with the sugar-phosphate moieties in the DNA backbone induces both AP sites and SSB with similar efficiency. Direct ionization of DNA is notably more involved in the production of DSB and base lesion clusters than in the production of AP site clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号