首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple forms of peroxidase with indole-3-acetic acid (IAA) oxidase activity were detected in callus cultures from soybean seeds [ Glycinc max (L.) Merrill, cv. Acme] using ion-exchange chromatography and polyacrylamide gel electrophoresis. The properties of the IAA oxidase were studied with a partially purified fraction eluted from a DEAE cellulose column. At pH 5.7. p-coumaric acid and MnCl2 were required as cofactors and H2O2 was not able to replace them, but H2O2 eliminated the usual lag period of the reaction. Activation effects obtained with some dicarboxylic acids acting only on IAA oxidase are shown. These effects were studied at different pH values and oxalic acid was found to be the most efficient activator, particularly at pH 4.6. Activation by oxalic acid occurred even in the absence of MnCl2, but the presence of this salt produced a synergistic effect. IAA oxidase showed a sigmoidal kinetic behaviour at pH 5.7 changing to hyperbolic at pH 4.6  相似文献   

2.
Abstract— The soluble proteins released from the synaptic vesicles of rat cerebral cortex were studied. One fraction (D4) of these proteins was released in parallel with release of acetylcholine when synaptic vesicles were incubated at 37°C for 10 min in isotonic medium. Another fraction (Dj) was liberated from synaptic vesicles when their membranes were ruptured by mild treatment under hyposmotic conditions and freeze-thawing after release of D1 fraction. Fractions D1 and D2 contained 12 and 9 per cent, respectively, of the total protein in the synaptic vesicles. Some properties of these fractions were investigated by zone electrophoresis and ultracentrifugation, and by measuring their binding capacities for [14C]acetylcholine and various enzyme activities related to acetylcholine metabolism.  相似文献   

3.
Abstract— A study of the enzyme monoamine oxidase (MAO) was carried out in the monkey brain. From the monkey brain mitochondrial fraction a lysolecithin-soluble form of the enzyme (MAOs and an insoluble form (MAOp) were isolated. The latter required freezing, thawing and sonication for solubilization. Both these forms of MAO had identical electrophoretic mobilities, a pH optimum of 7 and comparable thermal stabilities. The enzyme which could not be solubilized and which remained membrane-bound also gave the same pH optimum of 7 and a similar thermal stability profile. Both MAOs and MAOp had comparable K m values of 2.2 × 10−5 m and 5.0 ×105- m respectively when using tyramine as substrate and 7.4 ×−5 M and 7.7 × 10−5 m respectively with benzylamine as substrate. The K m values of the membrane-bound enzyme were 1.0 × 10"5m with tyramine as substrate 2.5 × m with benzylarnine as substrate. The MAO inhibitors, tranylcypromine, isocarboxazid and iproniazid inhibited both MAOs and MAOp to approximately the same extent. The extent of inhibition of the membrane-bound enzyme however, was relatively different with all three inhibitors. Immunodiffu-sion techniques using anti-MAOp indicated the immunological identity among MAOp, MAOs and the mitochondrial fraction. Substrate specificity and substrate competition experiments as well as the use of the selective inhibitor pargyline indicated the presence of both the 'A' and 'B' type of activity in the MAO isolated from monkey brain.  相似文献   

4.
β-Galactosidase from Lactobacillus kefiranofaciens K-1 was isolated and characterized. Optimal temperature and pH for the enzyme reaction were 50°C and pH 6.5, respectively. Molecular weight was estimated to be approximately 311000. Glucose and galactose inhibited the activity, but the inhibition by galactose was rather weaker than observed in other β-galactosidases. MnCl2 and MgCl2 had no effect on the activity. FeSO4, AgNO3 and HgCl2 acted as the inhibitor. β-Mercaptoethanol and L-cysteine activated the enzyme, while iodoacetamide inhibited the activity. The K m values were 4.92 mmol/1 for ONPG and 1.27 mmol/1 for lactose.  相似文献   

5.
An intracellular alpha-aminoacyl-peptide hydrolase (EC 3.4.11.-) from Naegleria fowteri nN68 (ATCC 30894) has been characterized. The enzyme preparation hydrolyzed phenylalanyl-, tyrosyl-, leucyl-, arginyl-, alanyl-, tryptophanyl-, histidyl-, methionyl-, and lysyl-naphthylamide but not benzoylleucyl-, leucylglycyl-, glycylprolylleucyl-, glycyl-, threonyl-, aspartyl-, or glutamyl-naphthylamide. The aminopeptidase activity was inhibited by the cysteine-protease inhibitors—hydroxymercuribenzoate, chloromercurisulfate, and iodoacetate- by the aminopeptidase inhibitors-bestatin and trans-epoxysuccinyl-leucyl-agmatine- by an inhibitor of soluble alanyl aminopeptidase EC 3.4.11.14, puromycin, and by the metalloprotease inhibitor, o-phenanthroline. The exopeptidase activity was not inhibited by the chelator, ethylenediaminetetraacetate, or the serine-protease inhibitor, phenylmethylsulfonylfluoride. The pH optimum of the exopeptidase was between 7.0 and 8.0. Enzyme activity was stable at 55°C for 30 min, but all activity was lost after 15 min at 80°C. Enzyme activity was inhibited by 100 μM HgCI2 and CdCl2 but not by 1 mM CoCl2, CuCl2, MnCl2, NiCl2, FeCl2, or ZnCl2. Enzyme activity was inhibited by 0.1% sodium dodecyl sulfate but not by 0.2% Brij 35, Tween 20, Tween 80, or Triton X-100.  相似文献   

6.
LIMITATIONS OF PHOTOSYNTHESIS IN DIFFERENT REGIONS OF THE ZEA MAYS LEAF   总被引:3,自引:0,他引:3  
The progressive development of the photosynthetic apparatus occurring along the length of the Zea mays leaf offers a convenient system with which to examine the limitations to photosynthetic CO2 assimilation during biogenesis of a C4 leaf. Changes in light-induced O2 evolution and CO2 assimilation, chlorophyll content, activity of PEP-carboxylase, NADP-malic enzyme and the 'R5P system' (consisting of d -ribose-5-phosphate-keto isomerase, ATP- d -ribulose-5 phosphate 1-phosphotransferase and d -ribulose-1,5-bisphosphate carboxylase) and fluorescence emission characteristics were examined along the length of the second leaf of 7-day-old plants grown under a diurnal light regime. The results suggest that the major limitation to CO2 assimilation in the leaf sheath lies within the chlorenchyma and is either energy supply for carboxylation or the capacity of key photosynthetic enzymes. In the leaf blade stomatal resistance to CO2 diffusion constitutes a major fraction of the total leaf resistance to CO2 assimilation implicating the stoma as the major limiting factor to photosynthetic CO2 assimilation.  相似文献   

7.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

8.
Abstract— Cultured pineal glands incorporated 32P into membrane phospholipids. Treatment of cultured glands with norepinephrine, which is known to stimulate membrane- bound pineal adenyl cyclase and to increase the production and secretion of melatonin, stimulated the incorporation of 32P into a phospholipid fraction of membranes and particulates containing phosphatidyl serine and phosphatidyl inositol. The labelling of other phospholipid fractions and the total 32P in the gland were not changed by norepinephrine treatment. Experiments with chronically-denervated pineal glands indicated that the effect of norepinephrine on the [32P]labelling of phospholipids occurred at a postsynaptic site. When norepinephrine-stimulated secretion of melatonin was partially inhibited by p -chlorophenylalanine (a compound which blocks the synthesis of melatonin precursors), the norepinephrine-stimulated labelling of phospholipids was still observed. Conversely, when melatonin secretion was stimulated in the absence of norepinephrine by treatment with the immediate precursor of melatonin, N -acetylserotonin, a stimulation of 32P- labelling of phospholipids did not occur. These observations suggest that the increased [32P]- labelling of a phospholipid fraction caused by the norepinephrine treatment is not related to the secretion of melatonin. This effect on phospholipids may be associated with the interaction of norepinephrine with a membrane-bound postsynaptic receptor. Stimulation by norepinephrine of [32P]-incorporation into phospholipids has not been previously reported to occur in a tissue in which cholinergic fibres are absent.  相似文献   

9.
Abstract— Activation of nerve elements in vivo and in vitro is associated with an increased rate of choline uptake by a Na+-dependent high affinity transport system. Following the methodology of B arker (1976), rat cortical synaptosomes were depolarized (37°C, 10min) by 25mM-KCl in the presence of CaCl2 (1 mM) or other divalent cations. After reisolation by centrifugation, the rate of 3H-choline uptake (1.25μM) was measured by Millipore filtration. KCl treatment alone failed to accelerate the rate of uptake in the reisolated synaptosomes. CaCl2, BaC12 or SrCl2 (but not MgCl2 or MnCl2) were necessary (1 mM) to observe the KCl induced acceleration. Moreover, RbCl, but not LiCl or CsCl, also produced the calcium-dependent rate enhancement in the reisolated synaptosomes. The conditions mediating the enhanced rate of choline uptake correlated strongly with those associated with neurotransmitter release. To test this possibility, synaptosomal acetylcholine content was measured in response to the various salt treatments. Treatment with KCI (25 mM) and CaCl2 (1 mM), but not KCl alone, reduced the synaptosomal acetylcholine content from 154 to 113pmol/mg protein. The respective rates of choline uptake increased about 60%. The increased rate was reversed by incubation with 50 μM-choline followed by synaptosome reisolation. This procedure also normalized the acetylcholine content. In summary, the rate of choline uptake by the high affinity choline uptake system is inversely related to the synaptosomal acetylcholine content.  相似文献   

10.
Abstract— An analysis of the [3H]DFP-labelled catalytic subunits of mammalian (bovine SCG) acetylcholinesterase (AChE, EC 3.1.1.7.) indicates a monomer molecular weight of 75,000. This is equivalent to the mass previously determined for the smallest active form and demonstrates that the globular, or G forms, are respectively monomeric (G1 form, 4S), dimeric (G2 form, 6.5S) and tetrameric (G4 form, 10S). In the tetrameric G4 form the catalytic chains are associated in dimers, by disulphide bonds.
The effect of reduction and proteolysis has shown that the dimeric form (G2 form, 6.5S) is readily reduced into G1, while the tetramer G4 is very stable, being only dissociated by a combination of reduction and proteolysis by high concentration of trypsin. The asymmetric forms A12 (16S), A8 (13S) and A4 (9S) are not sensitive to reduction, but are readily dissociated by low concentrations of trypsin, into each other, progressively liberating isolated tetramers. We obtained essentially identical results with AChE preparations from rat brain or superior cervical ganglion. These observations support a general model for the quaternary structure of acetylcholinesterase molecular forms.  相似文献   

11.
ABSTRACT. The subunit composition and intracellular location of the two forms of cAMP-dependent protein kinase of Paramecium cilia were determined using antibodies against the 40-kDa catalytic (C) and 44-kDa regulatory (R44) subunits of the 70-kDa cAMP-dependent protein kinase purified from deciliated cell bodies. Both C and R44 were present in soluble and particulate fractions of cilia and deciliated cells. Crude cilia and a soluble ciliary extract contained a 48-kDa protein (R48) weakly recognized by one of several monoclonal antibodies against R44, but not recognized by an anti-R44 polyclonal serum. Gel-filtration chromatography of a soluble ciliary extract resolved a 220-kDa form containing C and R48 and a 70-kDa form containing C and R44. In the large enzyme, R48 was the only protein to be autophosphorylated under conditions that allow autophosphorylation of R44 The subunits of the large enzyme subsequently were purified to homogeneity by cAMP-agarose chromatography. Both C and R48 were retained by the column and eluted with 1 M NaCl; no other proteins were purified in this step. These results confirm that the ciliary cAMP-dependent protein kinases have indistinguishable C subunits, but different R subunits. The small ciliary enzyme, like the cell-body enzyme, contains R44, whereas R48 is the R subunit of the large enzyme.  相似文献   

12.
Abstract— Lithium chloride (2 m m ) significantly inhibited the increases in cyclic AMP and in cyclic GMP caused by norepinephrine or high concentrations of potassium in intact rat pineal glands. Adenylyl cyclase activity in homogenates and its stimulation by isoproterenol, a β-adrenergic agonist, were also inhibited. Lithium reduced the apparent V max of isoproterenol-stimulated adenylyl cyclase activity without significantly affecting the apparent affinity for isoproterenol. There was no effect on the binding of the antagonist [3H]dihydroalprenolol to the β-adrenergic receptors, nor on the competition for binding sites by isoproterenol. Inhibition of adenylyl cyclase activity by lithium was inversely related to the magnesium concentration in the reaction mixture. There was no differential effect of lithium on adenylyl cyclase activity from supersensitive vs subsensitive glands. Lithium may inhibit cyclic nucleotide synthesis by interfering with the role of divalent cations.  相似文献   

13.
CHANGES OF THYMIDINE KINASE IN THE DEVELOPING RAT BRAIN   总被引:4,自引:1,他引:3  
Abstract— Thymidine kinase (ATP: thymidine-5'-phosphotransferase EC 2.7.1.21) of the supernatant fraction from 6-day-old rat brain possessed a pH optimum of 8.0 and required the presence of 5mM-ATP and 2.5 mM-MgCl2 for maximum activity. The activity was completely inhibited by addition of 1.8 mM-TTP. The enzyme activity was lost if the same supernatant fraction was refrozen and thawed. Km was 2.8 × 10−6 M for [6-3H]thymidine.
Following subcellular fractionation of rat brain, the greatest proportion and highest specific activity of thymidine kinase was found in the supernatant fraction. Thymidine kinase activities reached a maximum at 6 days of age and then dropped sharply during maturation. Comparative studies of thymidine kinase activities of cerebrum, cerebellum and the remainder of the brain during growth indicated that the activity in the cerebellum was usually higher than those in the cerebrum and the remainder, and the biggest differences obtained at 6 days after birth corresponded with the peak in cerebellar activity.  相似文献   

14.
Abstract— Subcellular fractions have been prepared from normal human caudate nucleus and substantia nigra by a standard fractionation technique and the fractions assayed for the following enzymes, which were studied because of their relevance to neurotransmission and pathological change: glutamate decarboxylase (EC 4.1.1.15), choline acetyltransferase (EC 2.3.1.6), acetylcholinesterase (EC 3.1.1.7), acid phosphatase (EC 3.1.3.2) and succinate dehydrogenase (EC 1.3.99.1). The distribution of these enzymes was assessed in relation to the morphology of the fractions as observed by electron microscopy. As with preparations from animal cerebral cortex, acetylcholinesterase and acid phosphatase were found mainly in fractions known to contain plasma membranes, synaptosomal membranes and microsomes. The levels of choline acetyltransferase in fractions from the substantia nigra were too low to measure but, in the caudate nucleus, the enzyme was concentrated in the crude mitochondrial fraction (P2), especially in the P2B and P2C subfractions. A high proportion of the glutamate decarboxylase activity was present in the P2 fractions of the substantia nigra and caudate nucleus and, although the synaptosomal (P2B) fraction contained the enzyme, significant amounts were found in the mitochondrial (P2C) fraction. This may have been due to some contamination of the mitochondria with small synaptosomes. Succinate dehydrogenase showed a conventional bimodal distribution between synaptosomes and mitochondria with a concentration in the latter.  相似文献   

15.
Abstract: Rat striatal tyrosine hydroxylase can be isolated in both a soluble and a synaptic membrane-bound form. The membrane-bound enzyme, which exhibits lower K ms for both tyrosine (7 μ M ) and reduced pterin cofactor (110 μ M ) relative to the soluble enzyme (47 μ M and 940 μ M , respectively), can be released from the membrane fraction with mild detergent, and concomitantly its kinetic properties revert to those of the soluble enzyme. Treatment of membrane-bound tyrosine hydroxylase with C. perfringens phospholipase C increased the K m of the enzyme for tyrosine to 27 μ M and the V max by 60% without changing the K m for cofactor. In contrast, treatment of membrane-bound tyrosine hydroxylase with V. russelli phospholipase A2 increased the K m for tyrosine to 48 μ M increased the V max and increased the K m for cofactor to 560 μ M . The enzyme remained bound to the membrane fraction following both phospholipase treatments. Addition of phospholipids to treated enzyme could partially reverse the effects of phospholipase A2 treatment, but not the effects of phospholipase C treatment. The kinetic properties of phospholipase-treated, detergent-solubilized tyrosine hydroxylase were identical to those of the control solubilized enzyme. Tyrosine hydroxylase appears to interact with synaptic membrane components to produce at least two separately determined consequences for the kinetic properties of the enzyme.  相似文献   

16.
Abstract: A fraction enriched in capillaries has been prepared from the guinea pig cerebral cortex. The purity of this fraction was checked by light- and electron-microscopic examination and by its high enrichment in alkaline phosphatase and γ-glutamyl transpeptidase. In the capillary-rich fraction, the endogenous level of histamine was 1.9%'of that measured in the initial hornogenate. The histamine-synthesizing enzyme, I-histidine decarboxylase, and the metabolizing enzyme, histamine-N-methyltransferase, were barely detectable. In addition, histamine elicits a twofold stimulation in the accumulation of cyclic AMP in this capillary fraction with an EC50 of 5 γM. Agonists and antagonists of the two types of histamine receptors (H1 and H2) were used for the characterization of the receptors mediating this action: H2-receptor agonists were able to activate the adenylate cyclase with "relative potencies" similar to that found on typical H2-receptors, and cimetidine, a specific H2-receptor antagonist, competitively inhibited the response to histamine with a K1 value reflecting its interaction with a single population of H2-receptors. On the contrary, data obtained with H1-receptor agonists and antagonists reflect their interaction with H2-receptors rather than H1-receptors. Thus H2-receptors are involved in the activation of adenylate cyclase of the capillary fraction.  相似文献   

17.
PURIFICATION OF PROTEIN CARBOXYMETHYLASE FROM OX BRAIN   总被引:4,自引:3,他引:1  
Abstract— The enzyme protein carboxymethylase from the soluble fraction of ox brain was purified to electrophoretic homogeneity. Brain protein carboxymethylase activity was also detected in a membrane-bound form which could only be solubilized by treatment with detergent. The solubilized membrane-bound form differed from the 'native' soluble form in that the former irreversibly lost activity on removal of the detergent. The two forms, however, have several similarities, having a molecular weight of 35,000, a K m of 2.7 × 10−6 M for S -adenosyl-L-methionine, and a pH optimum of 6.2 when ovalbumin was used as the methyl acceptor.  相似文献   

18.
Abstract In Saccharomyces cerevisiae heat-shock induces an increase in proteinase activity. The induction is probably due to newly synthesized enzyme molecules, since the increase in proteinase activity can be inhibited by cycloheximide. Degradation of endogenous proteins is enhanced by EDTA, while the azocasein assay is not affected by MnCl2, MgCl2, or EDTA. The proteinase has a pH optimum of 8, and phenylmethylsulfonyl fluoride (PMSF) as well as chymostatin are strong inhibitors. We infer that the induced proteinase is probably identical with proteinase B of yeast.  相似文献   

19.
Abstract— Tyrosine hydroxylase (TH) activity was measured in the carotid body. superior cervical ganglion and adrenal glands of the rat under normal conditions and at 48 h following exposure of the animals for 1-3 h in a low O2 atmosphere. Basal TH levels were 5-6 nmol/h/mg tissue for both the carotid body and the ganglion. Forty-eight hours after hypoxia, there was an increase in enzyme activity in both tissues which paralleled the severity of the hypoxia but was greater in the carotid body than the superior cervical ganglion. Thus, following exposure to 5% O2 in N2 for two 30-min periods (20-min interim), TH activity had increased by 50% in the carotid body and 33% in the ganglion; after exposure to 10% O2 in N2 for 3 h (continuous), TH levels were increased by 37% in the carotid body and 12% in the ganglion. In the adrenal gland, basal TH activity was 3.42 ± 1.87 nmol/h/mg tissue, and this value was unchanged following either level of hypoxia.  相似文献   

20.
PROPERTIES OF RAT BRAIN NAD-KINASE   总被引:1,自引:1,他引:0  
Abstract— NAD-kinase was purified from rat brain acetone powder according to the method of W ang and K aplan (1954). The acetate buffer supernatant showed only very low specific activity but was largely free of the factors that interfere with the enzyme assay. The Michaelis constants for both substrates were determined, the values were 0·5 m m for NAD and 4·0 m m for ATP. The optimal pH was 7·4 in tris-HCl buffer and the highest NAD-kinase activity was observed in the hyaloplasm fraction. NADH2 inhibited the enzyme whereas NADPH2 did not. Finally, the reversible inhibition of SH-binding compounds is described and the observed properties of rat brain NAD-kinase compared with the properties of NADP synthesizing enzymes from pigeon liver and rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号