首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postsynaptic alpha adrenoceptors in arteries and veins represent a mixed population of alpha 1 and alpha 2 adrenoceptors, with both subtypes mediating vasoconstriction. In the peripheral arterial circulation, postsynaptic vascular alpha 1 adrenoceptors are found in the adrenergic neuroeffector junction, whereas postsynaptic vascular alpha 2 adrenoceptors are located extrajunctionally. In the venous circulation, it appears that alpha 2 adrenoceptors may be predominantly junctional, whereas alpha 1 adrenoceptors may be predominantly extrajunctional. In general, alpha 1 adrenoceptors play a more important functional role in arteries than in veins, with the converse being true for postsynaptic vascular alpha 2 adrenoceptors. The relationship between alpha-adrenoceptor occupancy and vasoconstrictor response is more favorable for postsynaptic vascular alpha 1 adrenoceptors than for alpha 2 adrenoceptors in both arteries and veins, and there is evidence for a receptor reserve in alpha 1 adrenoceptors in both the arterial and venous circulation. No reserve in postsynaptic vascular alpha 2 adrenoceptors is seen in the arterial circulation, but in isolated venous preparations, a reserve in alpha 2 adrenoceptors has been observed. It has been suggested that spare alpha 2 adrenoceptors found in veins, but not arteries, may be responsible, at least in part, for the exaggerated alpha 2-adrenoceptor-mediated response of veins relative to arteries.  相似文献   

2.
Postsynaptic alpha adrenoceptors on vascular smooth muscle   总被引:3,自引:0,他引:3  
A heterogeneous population of alpha adrenoceptors mediates vasoconstriction in the canine saphenous vein (CSV). Studies with isolated strips of venous smooth muscle incubated with selective alpha-adrenoceptor agonists and antagonists revealed that both alpha 1 and alpha 2 adrenoceptors exist independently in this tissue and both subtypes mediate a contractile response. Measurement of contractile responses in reduced or zero external calcium conditions indicates that stimulation of alpha 1 adrenoceptors induces contractions by influx of extracellular calcium and release of calcium from internal stores. In contrast, 45Ca uptake studies suggest that activation of the postsynaptic alpha 2 adrenoceptor produces vasoconstriction dependent only on influx of extracellular calcium. The influx of calcium produced by the selective alpha 2-adrenoceptor agonist BHT-920 is inhibited by calcium entry blockers. Measurements of transmembrane potentials from smooth muscle cells of the CSV suggest that alpha 1-adrenoceptor activation produces depolarization and contraction (electromechanical coupling) whereas alpha 2-adrenoceptor stimulation does not result in concentration-dependent depolarization of the smooth muscle cells (pharmacomechanical coupling).  相似文献   

3.
2-(Anilinomethyl)imidazolines with 2'-esters or 2'-amides are potent agonists of the cloned human alpha(1)-adrenoceptors in vitro. The size and shape of the ortho substituent can have significant effects on the potency, efficacy, and subtype selectivity of these 2-(anilinomethyl)imidazolines. alpha(1A)-subtype selective agonists have been identified.  相似文献   

4.
Novel 2'-heteroaryl-2-(phenoxymethyl)imidazolines have been identified as potent agonists of the cloned human alpha(1)-adrenoceptors in vitro. The nature of the 2'-heteroaryl group can have significant effects on the potency, efficacy, and subtype selectivity in this series. alpha(1A) Subtype selective agonists have been identified.  相似文献   

5.
The structure-activity relationship of 2'-pyrrole, pyrazole and triazole substituted 2-(anilinomethyl)imidazolines as alpha(1) adrenergic agonists was investigated. The size and orientation of substituents, as well as the position of the heteroatoms, were found to have a profound effect on the potency and selectivity of the molecules. Potent alpha(1A) subtype selective agonists have been identified.  相似文献   

6.
The subtypes of postjunctional alpha adrenoceptors in the feline pulmonary vascular bed were studied by using selective alpha-adrenoceptor agonists and antagonists. Under conditions of controlled pulmonary blood flow and constant left atrial pressure, intralobar injections of the alpha 1 agonists phenylephrine and methoxamine, and the alpha 2 agonists UK 14,304 and B-HT 933, increased lobar arterial pressure in a dose-related manner. Prazosin, an alpha 1-adrenoceptor antagonist, reduced responses to phenylephrine and methoxamine to a greater extent than responses to UK 14,304 and B-HT 933. Yohimbine, an alpha 2 blocker, decreased responses to UK 14,304 and B-HT 933 without altering responses to phenylephrine or methoxamine. The same pattern of blockade was observed in animals pretreated with 6-hydroxydopamine, an adrenergic neuronal blocking agent. However, in propranolol-treated animals, prazosin antagonized responses to phenylephrine and methoxamine without altering responses to UK 14,304 or B-HT 933, and the selectivity of the blocking effects of yohimbine were preserved. Responses to intralobar injections of norepinephrine (NE) were markedly decreased by prazosin, whereas yohimbine had only a small effect. These data suggest the presence of both postjunctional alpha 1 and alpha 2 adrenoceptors mediating vasoconstriction in the pulmonary vascular bed. These results also indicate that the vasoconstrictor responses to injected NE in the cat pulmonary vascular bed result mainly from activation of alpha 1 adrenoceptors.  相似文献   

7.
Alpha1 adrenoceptors have three subtypes and drugs interacting selectively with these subtypes could be useful in the treatment of a variety of diseases. In order to gain an insight into the structural principles governing subtype selectivity, ligand based drug design (pharmacophore development) methods have been used to design a novel 1,2,3-thiadiazole ring D analogue of the aporphine system. Synthesis and testing of this compound as a ligand on cloned and expressed human alpha1 adrenoceptors is described. Low binding affinity was found, possibly due to an unfavourable electrostatic potential distribution. Pharmacophore models for antagonists at the three adrenoceptor sites (alpha1A, alpha1B, alpha1D) were generated from a number of different training sets and their value for the design of new selective antagonists discussed. The first preliminary antagonist pharmacophore model for the alpha1D adrenoceptor subtype is also reported.  相似文献   

8.
alpha-Adrenoceptor agonists of both main groups, i. e. arylalkylamines and imidazolines, have a pronounced radioprotective effect. Their chemical analogs, which fail to stimulate alpha-adrenoceptors, do not protect mice. The effect of phenylephrine, adrenaline, and noradrenaline comes into play via alpha 1-adrenoceptors and that of clonidine, via alpha 2-adrenoceptors and also via alpha 1-adrenoceptors. Adrenoceptor agonists can probably manifest their radioprotective action via both subtypes of alpha-adrenoceptors. Possible intracellular mechanisms of the radioprotective action are discussed.  相似文献   

9.
The alpha adrenoceptors on endothelial cells   总被引:4,自引:0,他引:4  
Endothelial cells release a powerful factor (endothelium-derived relaxing factor [EDRF]) that relaxes smooth muscle cells in response to some vasodilating agents such as acetylcholine. Contraction curves to norepinephrine (NE) in greyhound, mongrel dog, and pig coronary artery rings were studied in vitro in the presence of propranolol. Removal of endothelium increased the sensitivity and maximum contraction in response to NE. In other experiments pig coronary rings were precontracted with a thromboxane mimetic U 46619 in the presence of propranolol. NE relaxed these arteries only if endothelium was present. Methoxamine was without effect but the relaxation response to NE was antagonized by phentolamine, idazoxan, and yohimbine, which suggests that there are alpha 2 adrenoceptors on endothelial cells that mediate the release of EDRF. Greyhound and mongrel dog large coronary arteries relaxed to NE only if prazosin was present, which suggests that alpha 1-adrenoceptor stimulation on the vascular smooth muscle can override the relaxation response to EDRF. Comparison of NE responses in carotid, mesenteric, renal, and femoral large arteries of the pig, greyhound, and mongrel dog indicate the nonuniformity of distribution of alpha 2 adrenoceptors on endothelium and alpha 1 and alpha 2 adrenoceptors on vascular smooth muscle. The integrity of the endothelium must now be considered in interpreting the vascular responses to alpha-adrenoceptor agonists.  相似文献   

10.
Arginine vasopressin (AVP) increases water permeability in the collecting duct of the nephron via activation of adenylyl cyclase. Alpha-2 (alpha2) agonists inhibit AVP-stimulated water permeability via binding to alpha2 adrenoceptors that have been divided into 3 subtypes- alpha2A, alpha2B, and alpha2C. Some biological effects mediated by alpha2 agonists result from nonadrenergic imidazoline receptors that exist in the rat kidney. Thus, alpha2-inhibition of AVP-stimulated water permeability in the rat collecting duct could be caused by imidazoline receptors. The purpose of this study was to test agonists and antagonists selective for alpha2 and imidazoline receptors on AVP-stimulated water permeability in the rat inner medullary collecting duct (IMCD). Some experiments were conducted where water permeability was stimulated by a nonhydrolyzable analog of adenosine 3', 5'-cyclic monophosphate (cAMP). Agonists included dexmedetomidine, clonidine, oxymetazoline, agmatine and rilmenidine. The latter two are selective imidazoline agonists. Antagonists included yohimbine, RX821002, atipamezole, prazosin, WB4101, idazoxan, and BU239. Prazosin and WB4101 demonstrate selectivity for the alpha2B and alpha2C subtypes, respectively, and oxymetazoline and RX821002 are selective for the alpha2A subtype. BU239 is selective for imidazoline receptors. Wistar rat terminal IMCDs were isolated and perfused to determine the osmotic water permeability coefficient (Pf). All agonists except agmatine inhibited AVP-stimulated Pf. Inhibition by rilmenidine indicated a different mechanism of action from other agonists. Dose-response data show dexmedetomidine to be the most potent inhibitor. Oxymetazoline and clonidine inhibited cAMP-stimulated Pf indicating that the mechanism involves postcAMP cellular events. It was reported previously that dexmedetomidine inhibits cAMP-stimulated Pf (1). All antagonists except prazosin and WB4101 reversed alpha2-inhibition of AVP-stimulated Pf. BU239 was effective at 1 microM but not at 100 nM. Results suggest that alpha2A adrenoceptors modulate water permeability in the IMCD. The involvement of imidazoline receptors is inconclusive.  相似文献   

11.
The imidazoline-preferring receptor   总被引:7,自引:0,他引:7  
Evidence gathered over the past ten years supports the existence of subtypes of alpha 2-adrenoceptors. A receptor which resembles the alpha 2-adrenoceptor, called the imidazoline-preferring receptor (IPR), is virtually insensitive to catecholamines but binds selectively imidazolines and oxazolines such as idazoxan and rilmenidine. In contrast, the catecholamine-preferring alpha 2-adrenoceptor is preferentially activated by catecholamines including alpha-methylnorepinephrine and epinephrine and is antagonized selectively by rauwolscine. In addition to different pharmacological profiles to agonists and antagonists, the IPR and alpha 2-adrenoceptors show differences in anatomical distribution and molecular properties. The evidence has been drawn primarily from in vitro physiological and radioligand binding studies, but is gradually extending into in vivo and even clinical studies.  相似文献   

12.
A number of subtypes of the alpha-adrenoceptor have been identified; however, knowledge of the three-dimensional structures of such membrane proteins is limited, and no crystal structure of an alpha-adrenoceptor is available to date. We have developed and analysed homology models of the alpha1A-adrenoceptor subtype based on the bovine rhodopsin crystal structure (1l9 h). Subsequent structural refinement was performed through molecular dynamics simulations using the Amber 7 suite of programs with a biphasic H2O/CHCl3/H2O cell utilised to mimic the receptor's natural membrane environment.  相似文献   

13.
The dark upper (ocular) surface of winter flounder (Pleuronectes americanus) possesses a chromatophore pattern, with cryptic dark bands and white spots, and a general background component, with melanophores under adrenergic neural control. In vitro responsiveness to the alpha-adrenoceptor agonists phenylephrine and clonidine and to the antagonists yohimbine and prazosin demonstrates that melanosome aggregation in this species is mediated through both alpha(1)- and alpha(2)-adrenoceptors, the alpha(2)-subtype being predominant in each pattern component. However, differences in the potency of agonists and antagonists indicate variability in the balance between the two receptors between pattern components. This paper demonstrates that it cannot be generalized that teleost melanophore alpha-adrenoceptors are universally of one subtype, and also that there is intraspecific variation in subtypes of these receptors associated with the flatfish cryptic patterning mechanism.  相似文献   

14.
Postsynaptic alpha-adrenoceptors in the rat tail artery have been examined by determining the pA2 values for antagonists against several alpha-adrenoceptor agonists. In this tissue the alpha-adrenoceptor agonists all produce concentration-dependent mechanical responses with the following rank order of potency: clonidine greater than norepinephrine greater than phenylephrine greater than UK 14304 greater than B-HT 920. Antagonism by prazosin and yohimbine of phenylephrine, norepinephrine, and clonidine responses does not reveal the anticipated discrimination between alpha 1- and alpha 2-adrenoceptors. Thus, pA2 values for prazosin (9.1-9.5), yohimbine (7.2-7.4), and corynanthine (7.0-7.1) and idazoxan (7.6) do not show large differences between these receptor agonists and suggests the predominance of alpha 1-adrenoceptor mediated contractile responses in this preparation. Significant differences between antagonist activities (pA2 values) in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) artery preparations have not been observed. The sensitivity sequence of alpha-adrenoceptor agonist-induced responses to nifedipine and D 600 is B-HT 920 greater than clonidine greater than phenylephrine greater than norepinephrine. Dependence of agonist response upon extracellular Ca2+ parallels the sensitivity to Ca2+ channel antagonists. Sensitivity to D 600 of phenylephrine responses increased with decreasing concentration of phenylephrine or with receptor blockade by phenoxybenzamine: sensitivity of responses to B-HT 920 was not affected by these procedures. Tail artery strips from WKY and SHR do not exhibit major differences in sensitivity to D 600 or to Ca2+ depletion. Bay k 8644, a Ca2+ channel activator, produces concentration-dependent mechanical responses in the tail artery in the presence of modestly elevated K+ concentrations (10-15 mM): these actions of elevated K+ can be mimicked by both alpha 1- and alpha 2-adrenoceptor agonists including methoxamine, St 587, UK 14304, and clonidine. These studies do not provide clear evidence for the existence of discrete postsynaptic alpha 1- and alpha 2-adrenoceptor populations in rat tail artery as indicated by pA2 values or Ca2+ dependence of response.  相似文献   

15.
A review is provided of the evidence in support of the existence of prejunctional alpha adrenoceptors on noradrenergic nerve terminals as well as the evidence for their physiological importance. The use of alpha-adrenoceptor agonists and antagonists has provided convincing data in support of the presynaptic receptor hypothesis. Moreover, there is ample evidence for the location of alpha adrenoceptors on nerve terminals. This evidence has often been forgotten in arguments opposing the presynaptic alpha-adrenoceptor hypothesis. The precise physiological role of presynaptic alpha adrenoceptors is still an open question, but there is support from a wide range of experiments in favor of a physiological role. Although it is not known which of these functions is most important, presynaptic alpha adrenoceptors may: regulate the pulse-to-pulse regulation of norepinephrine release during nerve stimulation, prevent noise, and protect the neuroeffector cell from excessive activation by transmitter during periods of rest or as physiological antagonists to the facilitation of transmitter release. In summary, evidence reviewed here strongly supports the existence of presynaptic alpha adrenoceptors. These receptors are clearly important pharmacologically and may play a physiological role in noradrenergic transmission. The exact physiological function must await further experimentation.  相似文献   

16.
Literature reports suggest that disruption of an interhelical salt bridge is critical for alpha(1)-adrenoceptor activation, and the basic amine found in adrenergic receptor ligands is responsible for the disruption. Novel 4-(anilinomethyl)imidazoles and 4-(phenoxymethyl)imidazoles are agonists of the cloned human alpha(1)-adrenoceptors in vitro, and potent, selective alpha(1A)-adrenoceptor agonists have been identified in this series. These imidazoles demonstrate similar potencies and alpha(1)-subtype selectivities as the corresponding 2-substituted imidazolines. The extremely close SAR suggests that, in spite of the large difference in basicity, these imidazoles and imidazolines may establish the same interactions to activate alpha(1)-adrenoceptors.  相似文献   

17.
Norepinephrine has been suggested to play a neurotrophic role during development and is present in the brain as early as embryonic day (E) 12. We have recently demonstrated that the alpha2A adrenoceptor subtype is widely expressed during times of neuronal migration and differentiation throughout the developing brain. Here, we report the temporal and spatial expression pattern of alpha2A adrenoceptors in neocortex during late embryonic and early postnatal development using in situ hybridization and receptor autoradiography. Functional alpha2 receptors in embryonic rat cortex were also detected using agonist stimulated [35S]GTPgammaS autoradiography. Both alpha2A mRNA and protein expression were strongly increased by E19 and E20, respectively. The increased expression was in the cortical plate and intermediate and subventricular zones, corresponding to tiers of migrating and differentiating neurons. This transient up-regulation of alpha2A adrenoceptors was restricted to the lateral neocortex. At E20, functional alpha2 adrenoceptors were also detected in deep layers of lateral neocortex. During the first week of postnatal development, the expression of alpha2A mRNA and protein changed markedly, giving rise to a more mature pattern of anatomical distribution. The temporal and spatial distribution of alpha2A adrenoceptors in developing neocortex is consistent with expression of functional proteins on migrating and differentiating layer IV to II neurons. These findings suggest that alpha2A receptors may mediate a neurotrophic effect of norepinephrine during fetal cortical development. The early delineation of the lateral neocortex, which will develop into somatosensory and auditory cortices, suggests an intrinsic regulation of alpha2A mRNA expression.  相似文献   

18.
The alpha2-adrenoceptors are G-protein-coupled receptors that mediate many of the physiological effects of norepinephrine and epinephrine. Mammals have three subtypes of alpha2-adrenoceptors, alpha2A, alpha2B and alpha2C. Zebrafish, a teleost fish used widely as a model organism, has five distinct alpha2-adrenoceptor genes. The zebrafish has emerged as a powerful tool to study development and genetics, with many mutations causing diseases reminiscent of human diseases. Three of the zebrafish adra2 genes code for orthologues of the mammalian alpha2-adrenoceptors, while two genes code for alpha2Da- and alpha2Db- adrenoceptors, representing a duplicated, fourth alpha2-adrenoceptor subtype. The three different mammalian alpha2-adrenoceptor subtypes have distinct expression patterns in different organs and tissues, and mediate different physiological functions. The zebrafish alpha2-adrenergic system, with five different alpha2-adrenoceptors, appears more complicated. In order to deduce the physiological functions of the zebrafish alpha2-adrenoceptors, we localized the expression of the five different alpha2-adrenoceptor subtypes using RT-PCR, mRNA in situ hybridization, and receptor autoradiography using the radiolabelled alpha2-adrenoceptor antagonist [ethyl-3H]RS-79948-197. Localization of the alpha2A-, alpha2B- and alpha2C-adrenoceptors in zebrafish shows marked conservation when compared with mammals. The zebrafish alpha2A, alpha2Da, and alpha2Db each partially follow the distribution pattern of the mammalian alpha2A: a possible indication of subfunction partitioning between these subtypes. The alpha2-adrenergic system is functional in zebrafish also in vivo, as demonstrated by marked locomotor inhibition, similarly to mammals, and lightening of skin colour induced by the specific alpha2-adrenoceptor agonist, dexmedetomidine. Both effects were antagonized by the specific alpha2-adrenoceptor antagonist atipamezole.  相似文献   

19.
In cutaneous veins of the dog, cooling augments the response to sympathetic nerve stimulation and exogenous norepinephrine (NE). The postjunctional alpha adrenoceptors in this blood vessel belong to both the alpha 1 and alpha 2 subtypes. Cooling augments alpha 2-adrenergic responses (presumably because of an increased receptor affinity), but depresses alpha 1-adrenergic responses (presumably because of a direct inhibitory effect on the contractile process). When agonists of high efficacy such as NE or phenylephrine are used, an alpha 1-adrenoceptor reserve is present that buffers the response from the inhibitory effect of cooling. This allows the potentiating effect of cold on the alpha 2-adrenergic component of the response to catecholamines to predominate, and the contractile response to exogenous NE and sympathetic nerve stimulation is augmented. By contrast, in deep veins of the limb, cold reduces the contractions evoked by alpha 1- and alpha 2-adrenergic activation. This can be explained best by the absence of a receptor reserve for alpha 1-adrenergic agonists of high efficacy, combined with a reduced density of postjunctional alpha 2 adrenoceptors.  相似文献   

20.
Alpha adrenoceptors, mediating contraction, have been shown to be present in strips of hypertrophic prostate surgically removed from patients with benign prostatic hypertrophy (BPH), providing a rational explanation for the demonstrated effectiveness of alpha antagonists in the symptomatic treatment of this disease. Inasmuch as the dog develops spontaneous and hormonally induced prostatic enlargement, studies were performed to compare the adrenoceptor characteristics of canine and human prostate to determine whether the dog represents a useful model to search for more effective alpha-adrenolytic therapy for human BPH. Norepinephrine produces contraction in isolated strips of canine prostate although it is only one-tenth as potent as previously reported in human tissue. In contrast, several selective alpha 1-adrenoceptor agonists are potent contractile agents in canine prostate, but are nearly inactive in the human tissue. This difference may be a consequence of their partial agonist character. The potency of selective alpha-adrenoceptor antagonists in blocking the norepinephrine-induced contractile response in both canine and human tissue is consistent with an action of norepinephrine on the alpha 1 adrenoceptor. The receptor dissociation constants for these antagonists are similar in prostatic tissue from dogs and humans, and the values in canine tissue correlate well with those obtained in the rabbit ear artery, a standard model for vascular alpha 1 adrenoceptors. Hence the dog may represent a useful model for studies of the potential responsiveness of human prostate to adrenergic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号