首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a possible role of a ceramide-dependent pathway in the regulation of Leydig cell function was investigated. Intracellular ceramide levels were increased by: (a) adding ceramide analogs; (b) inhibiting ceramidase activity; and (c) adding sphingomyelinase (SMase). The cell-permeable ceramide analogs N-acetyl-, N-hexanoyl- and N-octanoylsphingosine (C2, C6 and C8) were used. As inhibitor of ceramidase activity 1S,2R-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (MAPP) was used. Sphingomyelinase from S. aureus origin was utilized. Leydig cells were cultured for 3 or 24 h with or without the different drugs (10 microM) and SMase (0.3 U/ml) in the presence or absence of hCG (10 ng/ml). Basal testosterone production was not modified under any of the experimental conditions. A decrease in hCG-stimulated testosterone production was observed at 3 and 24 h in all cases. The inactive analog (N-hexanoyl dihydrosphingosine) did not produce inhibition in hCG-stimulated testosterone production. TNFalpha and IL1beta, two possible inducers of sphingomyelin hydrolysis, produced similar effects on hCG-stimulated testosterone production. In experiments performed in the presence of C6, inhibition in hCG-stimulated cAMP production was observed. The inhibitory effect of ceramide was also observed in dbcAMP-stimulated cultures indicating that this pathway inhibits post-cAMP formation events. To study possible loci for the action of ceramide on the steroidogenic pathway, cells were incubated with C6 and MAPP in the presence of different testosterone precursors. The drugs inhibited testosterone produced from 22(R)-hydroxycholesterol (22R-OHChol), pregnenolone and 17alpha-hydroxyprogesterone (17OHP4) but not from androstenedione (Delta4). These results suggest that a ceramide-dependent pathway regulates hCG-stimulated Leydig cell steroidogenesis at the level of cAMP production and at post-cAMP events.  相似文献   

2.
The effect of transforming growth factor beta on testicular steroidogenesis was studied by using a model of immature porcine Leydig cells cultured in a chemically defined medium. Leydig cells were cultured in the presence of human or porcine purified TGF beta and the following parameters were measured: cell proliferation, LH/hCG binding, and hCG-stimulated steroid hormone productions (DHEA, DHEAS and testosterone). Whereas TGF beta from the two sources had no effect on Leydig cell multiplication, it markedly inhibited LH/hCG-stimulated DHEA and DHEAS in a time- and dose-dependent manner. The maximal inhibitory effect of this peptide on LH/hCG binding (65% decrease), hCG-stimulated DHEA (77% decrease) and DHEAS (92% decrease) productions was observed with 2 ng/ml for 48 h of treatment. In contrast, TGF beta exerted a biphasic effect on hCG-stimulated testosterone production: stimulating (110% increase) until 2 ng/ml and inhibiting (35% decrease) for higher concentrations. [125I]TGF beta was cross-linked to Leydig cells using disuccinimidyl suberate; cells affinity labelled with [125I]TGF beta exhibit a major labelled band of approx 280 kDa, which has the properties expected from a TGF beta receptor. These data demonstrate that TGF beta is a direct potent regulator of Leydig cell steroidogenic function and its effects are probably mediated via a specific receptor.  相似文献   

3.
The effect of hCG and Arginine-Vasopressin (AVP) on testosterone production by purified mouse Leydig cells was examined under dynamic conditions in a perifusion system. A rapid and dose-dependent increase in testosterone release was induced by a 5 min exposure of the cells to increasing concentrations of hCG (0.01 to 1 ng/ml). The testosterone response to hCG was Gaussian in distribution with a peak value by 100 min. A 12 h pretreatment of Leydig cells with 10(-5) M AVP enhanced testosterone accumulation in the perfusate under basal conditions, but markedly reduced the hCG-stimulated testosterone production. The basal and hCG-stimulated testosterone secretion profiles by freshly isolated Leydig cells were, however, unaffected by the continuous presence of the same dose of AVP. These results support the finding that AVP acts directly on Leydig cells. They support the hypothesis of a possible role of neurohypophysial peptides on reproductive functions in the mouse by modulating steroidogenesis at the testicular level.  相似文献   

4.
The effects of transforming growth factor (TGF) on Leydig cell steroidogenesis in primary culture were investigated. Basal testosterone levels were 3.7 +/- 0.54 ng/ml (mean +/- SE, N = 7). In the presence of hCG (10 ng/ml), testosterone levels increased to 22.77 +/- 3.05 ng/ml. TGF-beta caused a dose dependent inhibition of hCG-stimulated testosterone formation but without effects on basal levels. TGF-beta also inhibited 8-bromo cyclic AMP-induced testosterone formation and hCG-stimulated cyclic AMP formation. In contrast, TGF-alpha had no effect on either basal or hCG-stimulated testosterone formation and did not modify the inhibitory effect of TGF-beta. Present study indicates that TGF-beta can modulate Leydig cell steroidogenesis.  相似文献   

5.
The inhibitory effects of recombinant porcine interferon-gamma (IFN gamma) on human CG (hCG)-stimulated testosterone production, and on mRNA concentrations of cholesterol side-chain cleavage (P450scc) and 17 alpha-hydroxylase/C17-20lyase (P450c 17) were investigated using porcine primary Leydig cell culture as a model. After preincubation of Leydig cells for 24 h with 1000 pM IFN gamma, hCG-stimulated (10 ng/ml, 2 h) testosterone production was inhibited by 50%, whereas no significant changes were seen in hCG-stimulated cAMP production. Incubation with 10 microM 5-cholestene-3 beta,22(R)-diol or 10 microM 5-cholestene-3 beta,20 alpha-diol together with hCG (10 ng/ml, 2 h) reversed most of the inhibitory effect of IFN gamma, suggesting that IFN gamma inhibits P450scc activity, possibly by inhibiting the substrate (cholesterol) availability for P450scc. Incubation with IFN gamma also decreased basal concentrations of P450scc (45%) and P450c 17 (35%) mRNA, although these changes probably did not contribute to the decreased testosterone production. Long-term treatment with hCG (100 ng/ml, 24 h) increased P450scc mRNA (3- to 4-fold) and P450c 17 mRNA (4- to 5-fold) concentrations. Simultaneous treatment with IFN gamma attenuated these hCG-induced increases in P450scc mRNA (50%) and P450c 17 mRNA (40-100%) concentrations, as well as in testosterone production (77%). This inhibition of testosterone production could only be partly reversed by the hydroxylated cholesterol derivatives. This suggests that in addition to possible suppression of cholesterol availability, decreased P450scc and/or P450c 17 activities (through decreased mRNA concentrations) were also involved in the IFN gamma suppressed steroidogenic capacity of porcine Leydig cells during long-term hCG stimulation.  相似文献   

6.
Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells   总被引:7,自引:0,他引:7  
It has been well known that reactive oxygen species (ROS) are produced in the steroidogenic pathway and spermatozoa. H2O2, one of ROS produced by spermatozoa, appears to be a primary toxic agent. In the present study, we examined the effects of H2O2 on the basal and evoked-testosterone release from primary Leydig cells, the protein expressions of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein were also investigated. Our preparation was found to contain approximately 87% Leydig cells and very few macrophages. The results demonstrated that H2O2 (>1 x 10(-4) M) significantly inhibited the basal and hCG-stimulated testosterone release. H2O2 abolished forskolin- or 8-Br-cAMP-evoked testosterone release. In the presence of pregnenolone, progesterone, or androstenedione, the inhibitory effect of H2O2 on testosterone release was prevented. H2O2 also inhibited pregnenolone production in the presence of trilostane (an inhibitor of 3beta-hydroxysteroid dehydrogenase), therefore diminished the activity of P450scc in Leydig cells. In addition to the inhibition of hormone secretion, H2O2 also regulated steroidogenesis by diminishing protein expression of StAR. These results suggest that H2O2 acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450scc activity and StAR protein expression.  相似文献   

7.
The effect of serum factors other than luteinizing hormone on Leydig cell testosterone secretion was examined using an in vitro bioassay system based on the stimulation of purified adult rat Leydig cells during a 20 h incubation in the presence of a maximal dose of human chorionic gonadotrophin (hCG). Charcoal-extracted serum and testicular interstitial fluid (IF) from normal adult male rats were separated into lipoprotein and lipoprotein-deficient fractions by density ultracentrifugation. Stimulatory bioactivity was found in the lipoprotein fraction of both serum and IF, although the levels of lipoprotein and corresponding bioactivity recovered from IF were significantly lower (25%) than those of serum. There was no difference between the effects of serum lipoproteins on Leydig cell testosterone production stimulated by either hCG or dibutyryl cAMP. In time-course studies, the serum lipoprotein fraction had no effect on hCG-stimulated testosterone production in vitro at 3.0 or 6.0 h, but partially prevented the normal decline in hCG-stimulated testosterone production after 6.0 h. In contrast, unfractionated serum was stimulatory at all time-points. In the absence of hCG, the lipoprotein fraction was stimulatory at both 6.0 and 20 h, although not at 3.0 h. The lipoprotein-deficient protein fraction of serum had no effect on hCG-stimulated testosterone production alone, but significantly enhanced the bioactivity of the lipoprotein fraction, and caused a dose-dependent stimulation of testosterone production in the presence of a constant concentration of serum lipoproteins. Both a stimulatory peak of activity (apparent MW 40-80 kDa), and a large MW (> 100 kDa) inhibitor of testosterone production were identified in serum after fractionation by gel filtration (Sephadex G-100). The data indicate that (i) the stimulatory effect of serum on short-term hCG-stimulated Leydig cell testosterone production in vitro is predominantly due to the serum lipoprotein fraction, possibly by providing additional precursors for testosterone synthesis, (ii) the biological activity of the lipoproteins is influenced by both stimulatory and inhibitory serum proteins in addition to luteinizing hormone, and (iii) that serum lipoproteins may be involved in supporting Leydig cell steroidogenesis in vivo.  相似文献   

8.
By using immature porcine Sertoli cells cultured in serum-free defined medium, we report that medium conditioned by Sertoli cells contained immunoreactive somatomedin C/insulin-like growth factor 1 (SmC/IGF1) measured following acidic gel filtration. The release of this immunoreactive SmC/IGF1 was slightly increased following Sertoli cell treatment with fibroblast growth factor but not with follicle-stimulating hormone or growth hormone. On the other hand, human biosynthetic SmC/IGF1 exerts a potent stimulatory effect on Leydig cell differentiated functions such as LH/hCG-binding (greater than 4-fold) and hCG-stimulated testosterone secretion (greater than 15-fold). This effect was dose and time dependent and the maximal increase of Leydig cell function was observed following 48 h treatment with 50 ng/ml SmC/IGF1. The steroidogenic action of the peptide was not related to Leydig cell growth since both cell number and 3H-thymidine incorporation into DNA were not or slightly (approximately equal to 1.5-fold) increased in the optimal conditions with SmC/IGF1 treatment (100 ng/ml for 48 h). Moreover, the concomitant treatment of Leydig cells by both arabinoside C (10(-5) M), a DNA synthesis inhibitor, and SmC/IGF1 did not modify the stimulating effect of the peptide on LH/hCG-binding and hCG-stimulated testosterone production. Taken together, the present findings support the concept that Sertoli cell derived SmC/IGF1 could be a potent regulator of Leydig cell differentiated functions.  相似文献   

9.
10.
We have previously shown that type IV collagen (alpha1 (IV) and alpha2 (IV) collagen chains) (Col-IV) inhibits testosterone (T) production by Leydig cells (LC). The aim of this study was to analyze mechanism/s by which Col-IV exerts this effect. No significant differences in the specific binding of hCG to LH/hCG receptors in LC cultured on uncoated or Col-IV coated plates were observed. An inhibition of cAMP production in hCG-stimulated LC cultured on Col-IV was detected. The inhibition exerted by Col-IV on T production in response to hCG was also observed when cells were stimulated with 8Bromo-cAMP. In addition, conversion of steroid precursors to T in LC cultured on uncoated and Col-IV coated plates was similar. On the other hand, we detected an increase of ERK1/2 phosphorylation in hCG-stimulated LC cultured on Col-IV. Genistein added to LC cultures reduced the ability of Col-IV to increase ERK1/2 phosphorylation and reverted the inhibitory effect of Col-IV on T production. An inhibitor of MEK, PD98059 added to LC cultures also reverted the inhibitory effect of Col-IV on T production. A decrease of steroidogenic acute regulatory protein (StAR) expression in hCG-stimulated LC cultured on Col-IV coated plates that could be reverted by addition of PD98059 to the cultures was also demonstrated. All together these results suggest that Col-IV inhibits T production in LC by binding to integrins, activating ERK1/2, decreasing cAMP production and decreasing StAR expression.  相似文献   

11.
B M Huang  C C Hsu  S J Tsai  C C Sheu  S F Leu 《Life sciences》2001,69(22):2593-2602
The stimulatory effect of Cordyceps sinensis (CS) on MA-10 mouse Leydig tumor cell steroidogenesis was previously demonstrated in our laboratory. In the present studies, we further determined the effect of CS on steroidogenesis in purified normal mouse Leydig cells. Different concentrations of CS (0.1-10 mg/ml) were added to Leydig cells without or with human chorionic gonadotropin (hCG) (50 ng/ml), and the steroid production was determined by radioimmunoassay (RIA). The results illustrated that CS stimulated normal mouse Leydig cell steroidogenesis in a dose-dependent relationship. CS at 3 mg/ml significantly stimulated testosterone production (p<0.05). Concerning the temporal relationship, CS at 3 mg/ml stimulated maximal testosterone production between 2 to 3 hr. Interestingly, hCG-stimulated testosterone productions were suppressed by CS in a dose-dependent relationship. CS also reduced dbcAMP-stimulated testosterone productions, which indicated that CS affected signal transduction pathway of steroidogenesis after the formation of cyclic AMP. Moreover, cycloheximide inhibited CS-treated mouse Leydig cell testosterone production, suggesting that new protein synthesis was required for CS-stimulated steroidogenesis.  相似文献   

12.
Summary We sought to establish conditions that increased the duration of testosterone production by fully differentiated adult rat Leydig cells in primary culture. A freshly isolated suspension of highly purified adult rat Leydig cells produced 83 ng testosterone/106 Leydig cells·h−1 when incubated in Medium 199 in a 1.5 ml microfuge tube with shaking for 3 h with a maximally stimulating concentration of ovine luteinizing hormone (LH). Unfortunately, adult rat Leydig cells that were allowed to attach only to a plastic culture dish flattened out, and testosterone production diminished rapidly. Leydig cells in Dulbecco's modified Eagles' medium-Ham's F12 (1∶1; vol/vol) containing Cytodex 3 beads pre-equilibrated in culture medium containing fetal bovine serum attached to the beads and remained viable, but produced only 30 ng testosterone/106 Leydig cells·h−1 when incubated for 24 h with similar stimulation. Leydig cells similarly cultured and maximally stimulated with LH, responded to bovine lipoproteins (<1.222 g/ml) producing 105 ng of testosterone/106 Leydig cells·h−1 when incubated with 1 mg/ml bovine lipoprotein. Therefore, lipoproteins maintain the steroidogenic capacity of purified adult rat Leydig cells in primary culture for 24 h. Paper presented at the 38th Annual Meeting of the Tissue Culture Association in Arlington, Virginia, in May 1987. The session was chaired by Dr. Carlton H. Nadolney, member of the TCA Committee on Toxicity, Carcinogenesis and Mutagenesis Evaluation. This research was supported in part by the National Institutes of Health (grant HD-07204), The Population Center (grant HD-06268), and EPA cooperative agreement (CR81-2765), an NSF equipment grant, and a Mellon Foundation Postdoctoral Fellowship for Gary Klinefelter. Although the research described herein has been funded in part by the U.S. Environmental Protection Agency through cooperative agreement (CR81-2765) to the Division of Reproductive Biology at Johns Hopkins University, it has not been subjected to the agency's peer and policy review, and therefore, does not necessarily reflect the views of the agency and no official endorsement should be inferred.  相似文献   

13.
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (3H)-AVP was found to bind to a single class of sites with high affinity (Kd = 2.20 +/- 0.18 nM) and low capacity (Bmax = 17.4 +/- 1.8 fmol/10(6) Leydig cells). Binding displacements with specific selective analogs of AVP indicated the presence of V1 subtype receptors on Leydig cells. The ability of AVP to displace (3H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (3H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells (P less than 0.001). This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation (P less than 0.01). AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation (P less than 0.001). This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels. We conclude from these data that AVP is capable of modulating steroidogenesis in Leydig cells through specific and functionally V1 receptor subtype and postulate that this effect may be part of an intratesticular paracrine/autocrine control mechanism.  相似文献   

14.
Summary Using a preparation of highly purified, adult rat Leydig cells and conditions of culture which we found to optimize testosterone production during 24 h, we sought to maintain optimal testosterone production for 3 d. Leydig cells cultured on Cytodex 3 beads at 19% O2 in Dulbecco's modified Eagle's medium-Ham's nutrient mixture F12 (1:1; vol/vol) containing 0.5 mg/ml, total bovine lipoproteins (<1.222 g/ml) with maximal luteinizing hormone (LH) stimulation failed to maintain a constant amount of testosterone for 3 d. These cells did however secrete a similar amount of total delta 4-3-ketosteroids on each of the 3 culture d, indicating that their viability was preserved. The predominance of progesterone and 170H-progesterone relative to the amount of androstenedione found on Days 2 and 3 suggested that the activity of the cytochrome P450 C17-hydroxylase-C17, 20-lyase enzyme in the smooth endoplasmic reticulum was diminished when Leydig cells were maintained in our primary culture for longer than 24 h. Decreasing the oxygen tension of the cultures from 19 to 5%, and decreasing the concentration of LH used to stimulate the Leydig cells from 100 to 0.1 ng/ml, were necessary to achieve maintenance of testosterone secretion without accumulation of other delta 4-3-ketosteroids during a 3-d period. Cells cultured in this fashion were still able to respond to maximal LH stimulation during Day 3, producing as much testosterone as if cultured for 24 h on Day 1 at 19% O2 with 100 ng/ml LH stimulation. This research was supported in part by grant HD-07204 from the National Institutes of Health, Bethesda, MD, The Population Center (grant HD-06268), an EPA cooperative agreement (CR81-2765), an NSF equipment grant, and a Mellon Foundation Postdoctoral Fellowship for Gary Klinefelter. Although the research described herein has been funded in part by the U.S. Environmental Protection Agency through cooperative agreement (CR81-2765) to the Division of Reproductive Biology at Johns Hopkins University, it has not been subjected to the agency's peer and policy review; therefore, it does not necessarily reflect the views of the agency and no official endorsement should de inferred.  相似文献   

15.
The effect of LHRH and one of its agonist (des-gly10 (D-Ala6)-LHRH-ethylamide) on the functional activity (testosterone and progesterone production) of purified fetal mouse Leydig cells was examined in short-term primary culture and under dynamic conditions. The continuous presence of increasing concentrations of LHRH (10(-10) to 10(-6) M) for 3 days was unable to affect the hCG-stimulated testosterone production on any day of culture. Stimulated testosterone production progressively decreased from day 1 to day 3 of culture (P less than 0.001). Progesterone accumulation increased in both basal and hCG stimulated conditions during the same period (P less than 0.001) and was not altered by the presence of LHRH at all three concentrations tested. There was no effect of LHRH pretreatment either on the basal production or on the acute hCG stimulation studied during a subsequent 6 h incubation. Exposure of cells to hCG for 120 min enhanced testosterone accumulation. No change in kinetic characteristics was observed when LHRH (10(-6) M) was continuously present in the medium. These results show that LHRH does not have any detectable effect on the fetal population of Leydig cell in the mouse.  相似文献   

16.
The aim of this study was to detect the effect of extracellular matrix (ECM) proteins on rat Leydig cell shape, adhesion, expression of integrin subunits and testosterone production, in vitro. Leydig cells isolated from adult rats were cultured on plates uncoated or coated with different concentrations of laminin-1, fibronectin, or type IV collagen in the presence or absence of hCG for 3 or 24 hr. A significant increase of cell adhesion and of alpha3, alpha5, and beta1 integrin subunit expression was observed when cells were cultured on ECM proteins, compared to those grown on uncoated plates. Leydig cells cultured on glass coverslips coated with ECM proteins for 24 hr exhibited elongated shapes with long cell processes (spreading), while cells cultured on uncoated plates showed few cell processes. A significant decrease in testosterone production was observed when basal and hCG-stimulated Leydig cells were cultured for 3 or 24 hr on plates coated with type IV collagen (12 and 24 microg/cm(2)) compared to uncoated plates. A significant though a slighter decrease in testosterone production was also observed in cells cultured on plates coated with fibronectin (12 and 24 microg/cm(2)), compared to uncoated plates. Laminin-1 did not modify testosterone production under basal or hCG stimulated conditions. These results suggest that ECM proteins are able to modulate Leydig cell steroidogenesis, in vitro.  相似文献   

17.
It is well established that beta-endorphin has a regulatory influence on the reproductive function at the level of the hypothalamic-pituitary axis. However, recent immunohistochemical evidence demonstrated that beta-endorphin is also present in the Leydig cells of fetal, neonatal and adult mice and hamsters. In addition, beta-endorphin synthesis was localized in the Leydig cells of adult rats, leading to the hypothesis of a direct function of the peptide in the reproductive organs. Our interest was to investigate the role of beta-endorphin at testicular level. We have demonstrated the presence of high-affinity opioid binding sites (Kd in the nanomolar range) in tubular homogenates and Sertoli cells in culture of adult (50 days) and immature (18 days post-natal) rat testes. Also, chronic beta-endorphin treatment of the Sertoli cells significantly inhibited basal and FSH-stimulated androgen-binding protein production, this effect being prevented by the universal opiate antagonist naloxone. No opiate binding was observed on Leydig cell cultures. Furthermore, we have demonstrated that acute or chronic beta-endorphin treatment does not affect testosterone production by Leydig cells in vitro, consistent with the absence of receptors on these cells. On the other hand, fetal Leydig cells (21 days fetal life) in culture produced considerable amounts of beta-endorphin. Also, fetal Leydig cells represented a preferred in vitro system to study beta-endorphin release since in adult cell culture a marked degradation of the peptide was detected (greater than 50%). beta-endorphin accumulation for 3 and 5 days was markedly increased by inhibitors of steroid biosynthesis (1.5-fold); a significant reduction by GnRH at both days (by 50-30%) was observed, while by dexamethasone the reduction was only noted after 5 days of treatment (by 50%). Acute stimulation (3 h) of control cells with hCG enhanced by 10-12-fold the beta-endorphin secretion. The hormone stimulation of beta-endorphin production was not mediated by testosterone. On the contrary, inhibition of Leydig cells steroid biosynthesis markedly increased basal and hCG-stimulated beta-endorphin production (150-200%), suggesting autocrine negative modulation of Leydig cell beta-endorphin by androgen and/or its metabolites. In contrast, dexamethasone reduced basal and hCG-stimulated beta-endorphin production (by 50%). Altogether these findings indicate that beta-endorphin produced within the Leydig cells may behave as a paracrine inhibitor of the Sertoli cell function and demonstrate that the peptide production is under direct control by gonadotropins and is modulated by steroids.  相似文献   

18.
Recently it has been reported that histone type H2A can inhibit gonadotrophin-stimulated cAMP formation and steroidogenesis by ovarian cells. In the present study we have investigated if similar antigonadotrophic effects of commercially available histones can also be demonstrated on testicular steroidogenic cells. Using percoll-purified mouse Leydig cells, we have demonstrated that several types of histones could almost completely inhibit hCG-stimulated testosterone production and cAMP formation. The inhibition was dose-dependent and could be reversed by the addition of excess of hCG. The most potent histone types were H2AS and H8S, both of which could inhibit hCG-stimulated cAMP formation half-maximally at concentrations of 4-5 micrograms/ml. Forskolin-stimulated cAMP formation was not affected by histones. When the cells were stimulated with either db-cAMP or rAP-II, histone H2AS and H8S failed to inhibit the testosterone production. In fact there was a marked increase in the amount of testosterone produced, the reason for which is not yet understood. The amount of cGMP accumulated in response to rAP-II was not affected by the presence of H2AS or H8S. In unstimulated cells, neither the cyclic nucleotide level nor the amount of steroid produced was affected by the histones. Based on the [125I]hCG binding data it is possible to conclude that histone H2AS inhibits the binding of hCG to its receptors on Leydig cells and thereby causes the inhibition of hCG-stimulated cAMP formation and steroidogenesis.  相似文献   

19.
The main goal of this study was to evaluate the possible effect of whole-body magnetic field (MF) exposure on the steroidogenic capacity of Leydig cells in vitro. In four separate experiments, male CFLP mice were exposed to sinusoidal 50-Hz, 100-microT MF. The duration of exposure was 23.5 h/day over a period of 14 days. At the end of the exposure, interstitial (Leydig) cells were isolated from the testicles of the sham-exposed and exposed animals. The cells were cultured for 48 h in the presence or absence of 1, 10, or 100 mIU/ml human chorionic gonadotropin (hCG). The luteinizing hormone (LH) analog hCG was used to check the testosterone (T) response of the sham-exposed controls and to evaluate the possible effect of the whole-body MF exposure on the steroidogenic capacity of Leydig cells in vitro. Testosterone content of the culture media and blood sera was measured by radioimmunoassay (RIA). In the cultures obtained from MF-exposed animals, the hCG-stimulated T response was significantly higher (p < 0.01) compared with the sham-exposed controls, while the basal T production of cells and the level of serum T remained unaltered. No MF exposure-related histopathological alterations were found in testicles, epididymes, adrenals, prostates, and pituitary glands. The MF exposure did not affect the animal growth rate and the observed hematologic and serum chemical variables. Our results indicate a presumably direct effect of whole-body MF exposure on the hCG-stimulated steroidogenic response of mouse Leydig cells.  相似文献   

20.
J P Mather  J M Saez  F Haour 《Steroids》1981,38(1):35-44
Primary cultures of interstitial cells were prepared from the testis of mice, rats, and pigs. The cells were grown in a defined medium supplemented with low (0.1%) serum and insulin, transferrin and epidermal growth factor. Comparisons of the interstitial cell cultures from the three species were made for plating efficiency, cell survival, maintenance of hCG receptors and maintenance of steroidogenic responsiveness to hCG. The porcine cultures had a higher plating efficiency and higher hCG receptor levels per cell than Leydig cells from either rodent. Additionally, the porcine cells showed an increase in testosterone (T) production with hCG stimulation throughout their lifespan in culture while the rodent cultures showed a decrease in T stimulation with time with no stimulation by day 6 in culture. These data indicate that species differences exist in hCG receptor concentrations per cell, the maintenance of hCG receptors and steroidogenic response in culture. The initial high survival, purity and continued functional response of porcine interstitial cell cultures make them a superior system for the study of gonadotropin regulation of Leydig cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号