首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ko SI  Park JH  Park MJ  Kim J  Kang LW  Han YS 《Mutation research》2008,648(1-2):54-64
Human ribosomal protein S3 (hRpS3) is a small ribosomal subunit showing apurinic/apyrimidinic (AP) lyase activity and has been suggested to play a role in the cellular DNA-damage response pathway. However, the functional interactions between hRpS3 and other base excision repair (BER) DNA glycosylases have not been reported. We identified, for the first time, the interaction between hRpS3 and human uracil-DNA glycosylase (hUNG) and investigated the functional consequences of this interaction. hRpS3 was shown to interact with hUNG in co-immunoprecipitation assay using transiently transfected HEK293 cells and GST pull-down assay using microbial expression systems. In an assay using a 5'-end-radiolabeled 39-mer oligonucleotide duplex containing a U/G mismatch, hRpS3 dramatically stimulated the uracil-excision activity of hUNG, whereas hRpS3 alone had no cleavage activity. Pre-incubation of hRpS3 with the U/G mismatch containing DNA duplex also increased the hUNG uracil-excision activity; however, hRpS3 did not increase the DNA binding activity of hUNG in a trapping assay of hUNG and the U/G mismatch containing DNA duplex using UV cross-linking. hRpS3 has been suggested to stimulate the uracil-excision activity of hUNG by enhancing its dissociation from AP sites and increasing its turn-over rate. The disruption of hRpS3 by small-interfering RNA (siRNA-hRpS3) transfection reduced the uracil-excision activity preserved in cell extracts, whereas the supplement of purified hRpS3 retained uracil-excision activity. These results strongly suggest that hRpS3 may be involved in the uracil-excision pathway, probably by participating in the DNA repair mechanism to remove uracil generated by the deamination of cytosine in DNA, and by preventing C/G-->T/A transition mutations.  相似文献   

2.
Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp on duplex DNA. Its homologs, present in Eukarya and Archaea, are part of protein complexes that are indispensable for DNA replication and DNA repair. In Eukarya, PCNA is known to interact with more than a dozen different proteins, including a human major nuclear uracil-DNA glycosylase (hUNG2) involved in immediate postreplicative repair. In Archaea, only three classes of PCNA-binding proteins have been reported previously: replication factor C (the PCNA clamp loader), family B DNA polymerase, and flap endonuclease. In this study, we report a direct interaction between a uracil-DNA glycosylase (Pa-UDGa) and a PCNA homolog (Pa-PCNA1), both from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (T(opt) = 100 degrees C). We demonstrate that the Pa-UDGa-Pa-PCNA1 complex is thermostable, and two hydrophobic amino acid residues on Pa-UDGa (Phe(191) and Leu(192)) are shown to be crucial for this interaction. It is interesting to note that although Pa-UDGa has homologs throughout the Archaea and bacteria, it does not share significant sequence similarity with hUNG2. Nevertheless, our results raise the possibility that Pa-UDGa may be a functional analog of hUNG2 for PCNA-dependent postreplicative removal of misincorporated uracil.  相似文献   

3.
The decision to stop smallpox vaccination and the loss of specific immunity in a large proportion of the population could jeopardise world health due to the possibility of a natural or provoked re-emergence of smallpox. Therefore, it is mandatory to improve the current capability to prevent or treat such infections. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG could be a rational strategy for the treatment of infections with poxviruses. In order to develop inhibitor assays for UNG, as a first step, we have characterised the recombinant vaccinia virus UNG (vUNG) and compared it with the human nuclear form (hUNG2) and catalytic fragment (hUNG) UNG. In contrast to hUNG2, vUNG is strongly inhibited in the presence of 7.5 mM MgCl2. We have shown that highly purified vUNG is not inhibited by a specific uracil-DNA glycosylase inhibitor. Interestingly, both viral and human enzymes preferentially excise uracil when it is opposite to cytosine. The present study provides the basis for the design of specific inhibitors for vUNG.  相似文献   

4.
Weak or nonexistent smallpox immunity in today's human population raises concerns about the possibility of natural or provoked genetic modifications leading to re-emergence of variola virus and other poxviruses. Thus, the development of new antiviral strategies aimed at poxvirus infections in humans is a high priority. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis. Consequently, the inhibition of UNG is a rational therapeutic strategy for infections with poxviruses. Monkeypox virus, which occurs naturally in Africa, can cause a smallpox-like disease in humans. Here, the monkeypox virus UNG (mpUNG) is characterized and compared to vaccinia virus UNG (vUNG) and human UNG (hUNG). The mpUNG protein excises uracil preferentially from single-stranded DNA. Furthermore, mpUNG prefers the U.G pair over the U.A pair and does not excise oxidized bases. Both mpUNG and vUNG viral proteins are strongly inhibited by physiological concentrations of NaCl and MgCl2. Although the two viral DNA repair enzymes have similar substrate specificities, the kcat/KM values of mpUNG are higher than those of vUNG. The mpUNG protein was strongly inhibited by 5-azauracil and to a lesser extent by 4(6)-aminouracil and 5-halogenated uracil analogues, whereas uracil had no effect. To develop antiviral drugs toward mpUNG, we also validated a repair assay using the molecular beacons containing multiple uracil residues. Potential targets and strategies for combating pathogenic orthopoxviruses, including smallpox, are discussed.  相似文献   

5.
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.  相似文献   

6.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

7.
Previous findings that the vaccinia virus uracil DNA glycosylase is required for virus DNA replication, coupled with an inability to isolate a mutant with an active site substitution in the glycosylase gene, were surprising, as such enzymes function in DNA repair and bacterial, yeast, and mammalian null mutants are viable. To further study the role of the viral protein, we constructed recombinant vaccinia viruses with single or double mutations (D68N and H181L) in the uracil DNA glycosylase conserved catalytic site by using a complementing cell line that constitutively expresses the viral enzyme. Although these mutations abolished uracil DNA glycosylase activity, they did not prevent viral DNA replication or propagation on a variety of noncomplementing cell lines or human primary skin fibroblasts. In contrast, replication of a uracil DNA glycosylase deletion mutant occurred only in the complementing cell line. Therefore, the uracil DNA glycosylase has an essential role in DNA replication that is independent of its glycosylase activity. Nevertheless, the conservation of the catalytic site in all poxvirus orthologs suggested an important role in vivo. This idea was confirmed by the decreased virulence of catalytic-site mutants when administered by the intranasal route to mice.  相似文献   

8.
Here, we report the molecular characterization of the human cytomegalovirus uracil DNA glycosylase (UNG) UL114. Purified UL114 was shown to be a DNA glycosylase, which removes uracil from double-stranded and single-stranded DNA. However, kinetic analysis has shown that viral UNG removed uracil more slowly compared with the core form of human UNG (Δ84hUNG), which has a catalytic efficiency (kcat/KM) 350- to 650-fold higher than that of UL114. Furthermore, UL114 showed a maximum level of DNA glycosylase activity at equimolar concentrations of the viral polymerase processivity factor UL44. Next, UL114 was coprecipitated with DNA immobilized to magnetic beads only in the presence of UL44, suggesting that UL44 facilitated the loading of UL114 on DNA. Moreover, mutant analysis demonstrated that the C-terminal part of UL44 (residues 291-433) is important for the interplay with UL114. Immunofluorescence microscopy revealed that UL44 and UL114 colocalized in numerous small punctuate foci at the immediate-early (5 and 8 hpi) phases of infection and that these foci grew in size throughout the infection. Furthermore, coimmunoprecipitation assays with cellular extracts of infected cells confirmed that UL44 associated with UL114. Finally, the nuclear concentration of UL114 was estimated to be 5- to 10-fold higher than that of UL44 in infected cells, which indicated a UL44-independent role of UL114. In summary, our data have demonstrated a catalytically inefficient viral UNG that was highly enriched in viral replication foci, thus supporting an important role of UL114 in replication rather than repair of the viral genome.  相似文献   

9.
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.  相似文献   

10.
The role of the accessory gene product Vpr during human immunodeficiency virus type 1 infection remains unclear. We have used the yeast two-hybrid system to identify cellular proteins that interact with Vpr and could be involved in its function. A cDNA clone which encodes the human uracil DNA glycosylase (UNG), a DNA repair enzyme involved in removal of uracil in DNA, has been isolated. Interaction between Vpr and UNG has been demonstrated by in vitro protein-protein binding assays using translated, radiolabeled Vpr and UNG recombinant proteins expressed as a glutathione S-transferase fusion protein. Conversely, purified UNG has been demonstrated to interact with Vpr recombinant protein expressed as a glutathione S-transferase fusion protein. Coimmunoprecipitation experiments confirmed that Vpr and UNG are associated within cells expressing Vpr. By using a panel of C- and N-terminally deleted Vpr mutants, we have determined that the core protein of Vpr, spanning amino acids 15 to 77, is involved in the interaction with UNG. We also demonstrate by in vitro experiments that the enzymatic activity of UNG is retained upon interaction with Vpr.  相似文献   

11.
Sun Y  Friedman JI  Stivers JT 《Biochemistry》2011,50(49):10724-10731
The human DNA repair enzyme uracil DNA glycosylase (hUNG) locates and excises rare uracil bases that arise in DNA from cytosine deamination or through dUTP incorporation by DNA polymerases. Previous NMR studies of hUNG have revealed millisecond time scale dynamic transitions in the enzyme-nonspecific DNA complex, but not the free enzyme, that were ascribed to a reversible clamping motion of the enzyme as it scans along short regions of duplex DNA in its search for uracil. Here we further probe the properties of the nonspecific DNA binding surface of {(2)H(12)C}{(15)N}-labeled hUNG using a neutral chelate of a paramagnetic Gd(3+) cosolute (Gd(HP-DO3A)). Overall, the measured paramagnetic relaxation enhancements (PREs) on R(2) of the backbone amide protons for free hUNG and its DNA complex were in good agreement with those calculated based on their relative exposure observed in the crystal structures of both enzyme forms. However, the calculated PREs systematically underestimated the experimental PREs by large amounts in discrete regions implicated in DNA recognition and catalysis: active site loops involved in DNA recognition (268-274, 246-250), the uracil binding pocket (143-148, 169-170), a transient extrahelical base binding site (214-216), and a remote hinge region (129-132) implicated in dynamic clamping. These reactive hot spots were not correlated with structural, hydrophobic, or solvent exchange properties that might be common to these regions, leaving the possibility that the effects arise from dynamic sampling of exposed conformations that are distinct from the static structures. Consistent with this suggestion, the above regions have been previously shown to be flexible based on relaxation dispersion measurements and course-grained normal-mode analysis. A model is suggested where the intrinsic dynamic properties of these regions allows sampling of transient conformations where the backbone amide groups have greater average exposure to the cosolute as compared to the static structures. We conclude that PREs derived from the paramagnetic cosolute reveal dynamic hot spots in hUNG and that these regions are highly correlated with substrate binding and recognition.  相似文献   

12.
The molecular basis by which proteins are transported along cytoskeletal tracts from the trans-Golgi network (TGN) to the cell periphery remains poorly understood. Previously, using human autoimmune sera, we identified and characterized a TGN protein, p230/Golgin-245, an extensively coiled-coil protein with flexible amino- and carboxyl-terminal ends, that is anchored to TGN membranes and TGN-derived vesicles by its carboxyl-terminal GRIP domain. To identify molecules that interact with the flexible amino-terminal end of p230, we used this domain as bait to screen a human brain cDNA library in a yeast two-hybrid assay. We found that this domain interacts with the carboxyl-terminal domain of MACF1, a protein that cross-links microtubules to the actin cytoskeleton. The interaction was confirmed by co-immunoprecipitation, an in vitro binding assay, double immunofluorescence images demonstrating overlapped localization in HeLa cells, and co-localization of FLAG-tagged constructs containing the interacting domains of these two proteins with their endogenous partners. Expression in HeLa cells of FLAG-tagged constructs containing the interacting domains of p230 and MACF1 disrupted transport of the glycosyl phosphatidyl inositol-anchored marker protein conjugated with yellow fluorescent protein (YFP-SP-GPI), while trafficking of the transmembrane marker protein, vesicular stomatitis virus glycoprotein conjugated with YFP (VSVG3-GL-YFP), was unaffected. Our results suggest that p230, through its interaction with MACF1, provides the molecular link for transport of GPI-anchored proteins along the microtubule and actin cytoskeleton from the TGN to the cell periphery.  相似文献   

13.
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.  相似文献   

14.
15.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   

16.
Life has adapted to most environments on earth, including low and high temperature niches. The increased catalytic efficiency and thermoliability observed for enzymes from organisms living in constantly cold regions when compared to their mesophilic and thermophilic cousins are poorly understood at the molecular level. Uracil DNA glycosylase (UNG) from cod (cUNG) catalyzes removal of uracil from DNA with an increased kcat and reduced Km relative to its warm-active human (hUNG) counterpart. Specific issues related to DNA repair and substrate binding/recognition (Km) are here investigated by continuum electrostatics calculations, MD simulations and free energy calculations. Continuum electrostatic calculations reveal that cUNG has surface potentials that are more complementary to the DNA potential at and around the catalytic site when compared to hUNG, indicating improved substrate binding. Comparative MD simulations combined with free energy calculations using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method show that large opposing energies are involved when forming the enzyme-substrate complexes. Furthermore, the binding free energies obtained reveal that the Michaelis-Menten complex is more stable for cUNG, primarily due to enhanced electrostatic properties, suggesting that energetic fine-tuning of electrostatics can be utilized for enzymatic temperature adaptation. Energy decomposition pinpoints the residual determinants responsible for this adaptation. Figure Electrostatic isosurfaces of cod uracil DNA glycosylase in complex with double stranded DNA  相似文献   

17.
Parker JB  Stivers JT 《Biochemistry》2011,50(5):612-617
The prodrug 5-fluorouracil (5-FU), after activation into 5-F-dUMP, is an extensively used anticancer agent that inhibits thymidylate synthase and leads to increases in dUTP and 5-F-dUTP levels in cells. One mechanism for 5-FU action involves DNA polymerase mediated incorporation of dUTP and 5-F-dUTP into genomic DNA leading to U/A, 5-FU/A, or 5-FU/G base pairs. These uracil-containing lesions are recognized and excised by several human uracil excision repair glycosylases (hUNG2, hSMUG2, and hTDG) leading to toxic abasic sites in DNA that may precipitate cell death. Each of these enzymes uses an extrahelical base recognition mechanism, and previous studies with UNG have shown that extrahelical recognition is facilitated by destabilized base pairs possessing kinetically enhanced base pair opening rates. Thus, the dynamic properties of base pairs containing 5-FU and U are an important unknown in understanding the role of these enzymes in damage recognition and prodrug activation. The pH dependence of the (19)F NMR chemical shift of 5-FU imbedded in a model trinucleotide was used to obtain a pK(a) = 8.1 for its imino proton (10 °C). This is about 1.5 units lower than the imino protons of uracil or thymine and indicates that at neutral pH 5-FU exists significantly as an ionized tautomer that can mispair with guanine during DNA replication. NMR imino proton exchange measurements show that U/A and 5-FU/A base pairs open with rate constants (k(op)) that are 6- and 13-fold faster than a T/A base pair in the same sequence context. In contrast, these same base pairs have apparent opening equilibrium constants (αK(op)) that differ by less than a factor of 2, indicating that the closing rates (k(cl)) are enhanced by nearly equal amounts as k(op). These dynamic measurements are consistent with the previously proposed kinetic trapping model for extrahelical recognition by UNG. In this model, the enhanced intrinsic opening rates of destabilized base pairs allow the bound glycosylase to sample dynamic extrahelical excursions of thymidine and uracil bases as the first step in recognition.  相似文献   

18.
DNA glycosylase recognition and catalysis   总被引:5,自引:0,他引:5  
DNA glycosylases are the enzymes responsible for recognizing base lesions in the genome and initiating base excision DNA repair. Recent structural and biochemical results have provided novel insights into DNA damage recognition and repair. The basis of the recognition of the oxidative lesion 8-oxoguanine by two structurally unrelated DNA glycosylases is now understood and has been revealed to involve surprisingly similar strategies. Work on MutM (Fpg) has produced structures representing three discrete reaction steps. The NMR structure of 3-methyladenine glycosylase I revealed its place among the structural families of DNA glycosylases and the X-ray structure of SMUG1 likewise confirmed that this protein is a member of the uracil DNA glycosylase superfamily. A novel disulfide cross-linking strategy was used to obtain the long-anticipated structure of MutY bound to DNA containing an A*oxoG mispair.  相似文献   

19.
hUNG2 and hSMUG1 are the only known glycosylases that may remove uracil from both double- and single-stranded DNA in nuclear chromatin, but their relative contribution to base excision repair remains elusive. The present study demonstrates that both enzymes are strongly stimulated by physiological concentrations of Mg2+, at which the activity of hUNG2 is 2-3 orders of magnitude higher than of hSMUG1. Moreover, Mg2+ increases the preference of hUNG2 toward uracil in ssDNA nearly 40-fold. APE1 has a strong stimulatory effect on hSMUG1 against dsU, apparently because of enhanced dissociation of hSMUG1 from AP sites in dsDNA. hSMUG1 also has a broader substrate specificity than hUNG2, including 5-hydroxymethyluracil and 3,N(4)-ethenocytosine. hUNG2 is excluded from, whereas hSMUG1 accumulates in, nucleoli in living cells. In contrast, only hUNG2 accumulates in replication foci in the S-phase. hUNG2 in nuclear extracts initiates base excision repair of plasmids containing either U:A and U:G in vitro. Moreover, an additional but delayed repair of the U:G plasmid is observed that is not inhibited by neutralizing antibodies against hUNG2 or hSMUG1. We propose a model in which hUNG2 is responsible for both prereplicative removal of deaminated cytosine and postreplicative removal of misincorporated uracil at the replication fork. We also provide evidence that hUNG2 is the major enzyme for removal of deaminated cytosine outside of replication foci, with hSMUG1 acting as a broad specificity backup.  相似文献   

20.
Cutaneous T-cell lymphoma-associated antigen 5 (cTAGE5), an originally identified tumor antigen, is overexpressed in various cancer cell lines. The cDNA encodes an integral membrane protein containing two coiled-coil motifs and a proline-rich domain. We show that cTAGE5 specifically localizes to the endoplasmic reticulum (ER) exit sites. In addition, cTAGE5 forms a complex with TANGO1 (MIA3), a previously characterized cargo receptor for collagen VII, by the interaction of their coiled-coil motifs. Of interest, cTAGE5, as well as TANGO1, is capable of interacting with the inner-layer coatomer of COPII Sec23/24 complex through their C-terminal proline-rich domains and required for collagen VII secretion. We propose that cTAGE5 acts as a coreceptor of TANGO1 for collagen VII export from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号