首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemimethylated oriC binding activity of the E. coli heavy density membrane fraction (outer membrane) was investigated by DNase I footprinting experiments using membranes obtained from different replication stages of PC-2 (dnaCts) cells. The maximal binding activity was found at the beginning of replication cycle and then decreased gradually. The same pattern of variation was observed with SeqA protein detected in the membranes by immunoblotting. Both binding activity and the presence of SeqA were conserved in the outer membrane even after floating centrifugation of the heavy density membrane fraction in a sucrose gradient, indicating that SeqA in fact can associate with the membrane and that this association varies according to replication cycle. Site specific binding to hemimethylated oriC, of the heavy density membrane obtained from seqA mutant, could be restored by addition of a low amount of His-tagged SeqA protein.  相似文献   

2.
A Landoulsi  A Malki  R Kern  M Kohiyama  P Hughes 《Cell》1990,63(5):1053-1060
A particular outer membrane fraction previously defined as possessing specific affinity for the hemimethylated form of the origin of replication of the E. coli chromosome (oriC) is shown to inhibit the initiation of DNA synthesis at this site on hemimethylated DNA templates in vitro. The replication of fully methylated or unmethylated DNA templates is not affected. Also, no inhibition is observed if initiation takes place at random sites on the hemimethylated template. The key inactivation step appears to be membrane inhibition of DnaA initiator protein binding to oriC. Remethylation of the membrane-bound hemimethylated DNA results in reactivation. Our results demonstrate direct involvement of the membrane in the control of DNA replication. We propose that association/dissociation of the origin from the cell membrane is one of the control elements governing interinitiation times in E. coli.  相似文献   

3.
The replication of both ColE1-type plasmids and plasmids bearing the origin of replication of the Escherichia coli chromosome (oriC) has been shown to be inhibited by hemimethylation of adenine residues within GATC sequences. In the case of oriC plasmids, this inhibition was previously shown to be mediated by the specific affinity of the hemimethylated origin DNA for an outer cell membrane fraction. Here, we suggest that a similar mechanism is operating in the case of the ColE1-like plasmid pBR322 as (i) a hemimethylated DNA fragment carrying the promoter for the RNA which primes DNA synthesis (RNAII) is specifically bound by the same membrane fraction and, (ii) the addition of the membrane fraction to a soluble assay of pBR322 replication results in preferential inhibition of initiation on the hemimethylated template. We suggest that membrane sequestration of hemimethylated origin DNA and/or associated replication genes following replication may be a common element restricting DNA replication to precise moments in the cell cycle.  相似文献   

4.
A Jacq  R Kern  A Tsugita    M Kohiyama 《Journal of bacteriology》1989,171(3):1409-1416
A purification procedure was devised for a low-molecular-mass (about 10-kilodalton) membrane protein from Escherichia coli that was shown to bind specifically to the chromosomal replication origin region (oriC). Nitrocellulose membrane retention assays showed the binding site to be adjacent to the right boundary of the oriC minimal sequence. We determined the amino acid sequence of the N-terminal and C-terminal regions as well as the global amino acid composition of this membrane protein. Specific antibodies against the protein were produced and used to confirm the cell membrane location of the protein. These results demonstrate that this is a new membrane protein, different from the previously described B' protein, with specific binding activity for the oriC region. We propose that this protein be called membrane oriC-binding protein 2 (MOB2 protein).  相似文献   

5.
J Herrick  R Kern  S Guha  A Landoulsi  O Fayet  A Malki    M Kohiyama 《The EMBO journal》1994,13(19):4695-4703
The outer membrane of Escherichia coli binds the origin of DNA replication (oriC) only when it is hemimethylated. We report here the results of a footprinting analysis with the outer membrane which demonstrate that its interaction with oriC occurs mainly at the left moiety of the minimal oriC, where 10 out of 11 Dam methylation sites are concentrated. Two regions, flanking the Integration Host Factor (IHF) sites, are preferentially recognized at the minimum membrane concentration at which oriC plasmid replication is inhibited in vitro. We have identified the putative proteins involved in hemimethylated oriC binding and cloned one of the corresponding genes (hobH). The purified LacZ-HobH fusion protein specifically binds oriC DNA at the same preferential sites as the membrane. A mutant of the hobH gene reveals partial asynchronous initiation of DNA replication.  相似文献   

6.
G B Ogden  M J Pratt  M Schaechter 《Cell》1988,54(1):127-135
DNA from the E. coli replicative origin binds with high affinity to outer membrane preparations. Specific binding regions are contained within a 463 bp stretch of origin DNA between positions -46 and +417 on the oriC map. This region of DNA contains an unusually high number of GATC sites, the recognition sequence for the E. coli DNA adenine methylase. We show here that oriC DNA binds to membrane only when it is hemimethylated. The E. coli chromosomal origin is hemimethylated for 8-10 min after initiation of replication, and origin DNA binds to membranes only during this time period. Based on these results, we propose a speculative model for chromosome segregation in E. coli.  相似文献   

7.
The essentials of DNA methylation.   总被引:105,自引:0,他引:105  
A Bird 《Cell》1992,70(1):5-8
  相似文献   

8.
T Brendler  A Abeles    S Austin 《The EMBO journal》1995,14(16):4083-4089
The P1 plasmid replication origin P1oriR is controlled by methylation of four GATC adenine methylation sites within heptamer repeats. A comparable (13mer) region is present in the host origin, oriC. The two origins show comparable responses to methylation; negative control by recognition of hemimethylated DNA (sequestration) and a positive requirement for methylation for efficient function. We have isolated a host protein that recognizes the P1 origin region only when it is isolated from a strain proficient for adenine methylation. The substantially purified 22 kDa protein also binds to the 13mer region of oriC in a methylation-specific fashion. It proved to be the product of the seqA gene that acts in the negative control of oriC by sequestration. We conclude that the role of the SeqA protein in sequestration is to recognize the methylation state of P1oriR and oriC by direct DNA binding. Using synthetic substrates we show that SeqA binds exclusively to the hemimethylated forms of these origins forms that are the immediate products of replication in a methylation-proficient strain. We also show that the protein can recognize sequences with multiple GATC sites, irrespective of the surrounding sequence. The basis for origin specificity is primarily the persistence of hemimethylated forms that are over-represented in the natural. DNA preparations relative to controls.  相似文献   

9.
The Escherichia coli replication origin oriC and other regions with high numbers of GATC sites remain hemimethylated after replication much longer than regions with average numbers of GATC sites. The prolonged period of hemimethylation has been attributed to the presence of bound SeqA protein. Here, it was found that a GATC cluster inserted at the datA site, which binds large amounts of DnaA in vivo, did not become remethylated at all, unless the availability of the DnaA protein was severely reduced. Sequestration of oriC was also found to be affected by the availability of DnaA. The period of origin hemimethylation was reduced by approximately 30% upon a reduction in the availability of DnaA. The result shows that not only SeqA binding but also DnaA binding to newly replicated origins contributes to keeping them hemimethylated. It was also found that the number of SeqA foci increased in cells with a combination of DnaA-mediated protection and sequestration at the GATC::datA cluster.  相似文献   

10.
In Escherichia coli, the origin of DNA replication, oriC, becomes transiently hemimethylated at the GATC sequences immediately after initiation of replication and this hemimethylated state is prolonged because of its sequestration by a fraction of outer membrane. This sequestration is dependent on a hemimethylated oriC binding protein such as SeqA. We previously isolated a clone of phage λgtll called hobH, producing a LacZ fusion protein which recognizes hemimethylated oriC DNA. Very recently, Thaller et al. (FEMS Microbiol. Lett. 146 (1997)191–198)found that the same DNA segment encodes a non-specific acid phosphatase, and named the gene aphA. We show here that the interruption of the aphA reading frame by kanamycin resistance gene insertion, abolishes acid phosphatase (NAP) activity. Interestingly, in the membrane of the null mutant, the amount of SeqA protein is about six times higher than that in the parental strain, suggesting the existence of a regulatory mechanism between SeqA and NAP expression.  相似文献   

11.
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.  相似文献   

12.
Preferential binding of SeqA protein to hemimethylated oriC, the origin of Escherichia coli chromosomal replication, delays methylation by Dam methylase. Because the SeqA-oriC interaction appears to be essential in timing of chromosomal replication initiation, the biochemical functions of SeqA protein and Dam methylase at the 13-mer L, M, and R region containing 4 GATC sequences at the left end of oriC were examined. We found that SeqA protein preferentially bound hemimethylated 13-mers but not fully nor unmethylated 13-mers. Regardless of strand methylation, the binding of SeqA protein to the hemimethylated GATC sequence of 13-mer L was followed by additional binding to other hemimethylated GATC sequences of 13-mer M and R. On the other hand, Dam methylase did not discriminate binding of 13-mers in different methylation patterns and was not specific to GATC sequences. The binding specificity and higher affinity of SeqA protein over Dam methylase to the hemimethylated 13-mers along with the reported cellular abundance of this protein explains the dominant action of SeqA protein over Dam methylase to the newly replicated oriC for the sequestration of chromosomal replication. Furthermore, SeqA protein bound to hemimethylated 13-mers was not dissociated by Dam methylase, and most SeqA protein spontaneously dissociated 10 min after binding. Also, SeqA protein delayed the in vitro methylation of hemimethylated 13-mers by Dam methylase. These in vitro results suggest that the intrinsic binding instability of SeqA protein results in release of sequestrated hemimethylated oriC.  相似文献   

13.
The Escherichia coli SeqA protein has been found to affect initiation of replication negatively, both in vivo and in vitro. The mechanism of inhibition is, however, not known. SeqA has been suggested to affect the formation and activity of the initiation complex at oriC, either by binding to DNA or by interacting with the DnaA protein. We have investigated the binding of SeqA to oriC by electron microscopy and found that SeqA binds specifically to two sites in oriC, one on each side of the DnaA binding site R1. Specific binding was found for fully and hemimethylated but not unmethylated oriC in good agreement with earlier mobility shift studies. The affinity of SeqA for hemi-methylated oriC was higher than for fully methylated oriC. The binding was in both cases strongly cooperative. We suggest that SeqA binds to two nucleation sites in oriC, and by the aid of protein-protein interaction spreads to adjacent regions in the same oriC as well as recruiting additional oriC molecules and/or complexes into larger aggregates.  相似文献   

14.
We isolated complexes containing oriC region DNA and outer membrane, named origin complex heavy and origin complex light, from the cells of Escherichia coli cultured in media with poor or rich of nutrients, and found the different nature of association between origin DNA and outer membrane. The ratio of origin complex light to origin complex heavy prepared from the cells cultured in rich media was lower than that of those from minimal medium culture. Outer membrane preparations from the cells grown in nutritious media had high abilities of association with origin complex light in the presence of magnesium. These results indicated that the number of binding sites on outer membrane with origin region DNA increase, or the binding between outer membrane and origin region DNA become more rigid, when cells grow faster and DNA replication initiate more frequently in a nutritious medium.  相似文献   

15.
We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.  相似文献   

16.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   

17.
oriC DNA in the hemimethylated (but not in the fully methylated) state reacts with an Escherichia coli K-12 outer membrane preparation. This reaction is drastically reduced when the membrane preparation of a seqA null mutant is used. An in vitro reconstitution of the activity was undertaken by adding a partially purified SeqA protein to a seqA mutant membrane without success. A possible reason for this failure might be a profound modification of the outer membrane of the seqA mutant (as revealed by the fact that membrane from the mutant sediments more slowly than that from the wild type during ultracentrifugation). There is also a reduction in the content of OmpF protein. Moreover, one of the minor outer membrane proteins involved in partitioning of newly synthesized chromosomes, the TolC (MukA) protein, was also found to be downregulated in the seqA mutant. This is also true of the hobH mutant grown in a high-osmolarity medium. Mutants of both seqA and hobH stop dividing after hyperosmotic shock, forming filaments (as observed in dam mutants).  相似文献   

18.
Following initiation of chromosomal replication in Escherichia coli, newly initiated origins (oriCs) are prevented from further initiations by a mechanism termed sequestration. During the sequestration period (which lasts about one-third of a cell cycle), the origins remain hemimethylated. The SeqA protein binds hemimethylated oriC in vitro. In vivo, the absence of SeqA causes overinitiation and strongly reduces the duration of hemimethylation. The pattern of immunostained SeqA complexes in vivo suggests that SeqA has a role in organizing hemimethylated DNA at the replication forks. We have examined the effects of overexpressing SeqA under different cellular conditions. Our data demonstrate that excess SeqA significantly increases the time oriC is hemimethylated following initiation of replication. In some cells, sequestration continued for more than one generation and resulted in inhibition of primary initiation. SeqA overproduction also interfered with the segregation of sister nucleoids and caused a delay in cell division. These results suggest that SeqA's function in regulation of replication initiation is linked to chromosome segregation and possibly cell division.  相似文献   

19.
A Abeles  T Brendler    S Austin 《Journal of bacteriology》1993,175(24):7801-7807
A mutant mini-P1 plasmid with increased copy number can be established in Dam- strains of Escherichia coli, where mini-P1 plasmid replication is normally blocked. Comparison of this plasmid and a plasmid driven by the host oriC replication origin showed that both origins are subject to control by methylation at two different levels. First, both origins appear to be subject to negative regulation acting at the level of hemimethylation. This probably involves the sequestration of the hemimethylated DNA produced by replication, as has been previously described for oriC. Second, both origins show a positive requirement for adenine methylation for efficient function in vivo. This conclusion is supported by the behavior of the P1 origin in an improved in vitro replication system. In vitro, where sequestration of hemimethylated DNA is not expected to occur, the hemimethylated P1 origin DNA was fully functional as a template. However, the activity of fully unmethylated DNA was severely restricted in comparison with that of either of the methylated forms. This in vitro uncoupling of the two effects of origin methylation suggests that two separate mechanisms are involved.  相似文献   

20.
The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号