首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expanded granular sludge bed reactor, inoculated with acclimated sulfidogenic granular sludge, was operated at 33 °C and fed with acetic acid as COD source and sulfate as electron acceptor. The bioreactor had a sulfate conversion efficiency of 80–90% at a high sulfate loading rate of 10.4 g SO4 2--S/l.d after only 60 days of start-up. This was achieved by implementing a dual operational strategy. Firstly acetic acid was dosed near stoichiometry (COD over sulfur ratio = 2.0 to 2.2) which allowed almost complete sulfate removal. Secondly the pH in the bioreactor was kept slightly alkaline (7.9 ± 0.1) which limited the concentration of the inhibitory undissociated hydrogen sulfide H2S (pKa = 7). This allowed the acetotrophic sulfate reducing bacteria to predominate throughout the long term experiment. The limitations of the EGSB technology with respect to the sulfate conversion rate appeared to be related to the biomass wash-out and granule deterioration occurring at superficial upflow velocities above 10 m/h. Increasing the recirculation flow caused a drop in the sulfate reduction rate and efficiency, an increase of the suspended sludge fraction and a considerable loss of biomass into the effluent, yielding bare mainly inorganic granules. Elemental analysis revealed that a considerable amount of the granular sludge dry matter at the end of the experiment, at an upflow velocity of 20 m/h, consisted of calcium (32%), mainly in the form of carbonate deposits, while organic matter only represented 7%.  相似文献   

2.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

3.
Malenko GP 《Theriogenology》1994,41(6):1207-1210
A method was devised to prevent loss of whole embryos during fixation. Specimens were prepared in a chamber saturated with fixative vapors consisting of 3 : 1 (v/v) 96%. ethanol/glacial acetic acid. Good quality specimens were obtained after fixation for at least 24 but not more than 72 h. After staining, specimens could be preserved for 3 to 4 d by storage in the fixation chamber, in 45% aqueous acetic acid vapor. Using the method suggested in this paper prevents loss of early embryos during fixation and allows storage of specimens for longer than usual time while maintaining the quality of the specimen.  相似文献   

4.
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations × three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37°C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37°C. At 30°C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37°C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and ≥2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.  相似文献   

5.
To obtain manno-oligosaccharides containing beta-1,2-linked nonreducing terminal groups from the mannan of Pichia pastoris IFO 0948 strain by acetolysis, an attempt was made to establish the reaction conditions under which cleavage of the alpha-1,6 linkage took place preferentially leaving manno-oligosaccharides composed largely of beta-1,2 linkages. By the action of an ordinary acetolysis medium, a 10/10/1 (v/v) mixture of acetic anhydride, acetic acid, and sulfuric acid at 40 degrees C for 13 h or at 25 degrees C for 120 h, the O-acetyl derivative of this mannan gave mannose, mannobiose, mannotriose, and mannopentaose. However, treatment of the same O-acetyl mannan with a 50/50/1 (v/v) acetolysis medium at 40 degrees C for 15 h gave a mannotetraose in addition to mannose, mannobiose, mannotriose, and mannopentaose. Use of a 100/100/1 (v/v) acetolysis medium at 40 degrees C for 36 h gave a more satisfactory result, a mixture of oligosaccharides, from mannose to mannopentaose, which contained more mannotetraose than mannopentaose. Because both mannotetraose and mannopentaose contained alpha-1,2 and beta-1,2 linkages, it was concluded that an acetolysis medium containing a low concentration of sulfuric acid, up to 0.5% (v/v), facilitates the preferential cleavage of the alpha-1,6 linkage, leaving manno-oligosaccharides containing the beta-1,2 linkage which was found to be labile to the action of the 10/10/1 (v/v) acetolysis medium.  相似文献   

6.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

7.
Kinetics of Acetate Metabolism during Sludge Digestion   总被引:9,自引:40,他引:9       下载免费PDF全文
The quantitative contribution of acetic acid to methane production was studied by use of C(14)-labeled acetic acid. Samples of domestic sewage sludge were incubated anaerobically in Warburg vessels. The rate of methane production in the vessels was 0.033 mumoles per ml per min. C(14)-labeled acetic acid was added, and the turnover rate was calculated. The pool size of acetic acid in the sludge was 4.7 mumoles/ml. The turnover rate was 0.0052 min(-1), giving a rate of formation of acetic acid of 0.024 mumoles per ml per min. Under these conditions, acetic acid would account for approximately 73% of the methane produced by the sludge. Acetic acid was found to exist primarily in an extracellular pool. The turnover rate of the extracellular pool was rapid, and it was concluded that most of the acetic acid must be metabolized to methane by a specialized microflora not involved in the formation of acetic acid.  相似文献   

8.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

9.
The FPS1 gene coding for the Fps1p aquaglyceroporin protein of an industrial strain of Saccharomyces cerevisiae was disrupted by inserting CUP1 gene. Wild-type strain, CE25, could only grow on YPD medium containing less than 0.45% (v/v) acetic acid, while recombinant strain T12 with FPS1 disruption could grow on YPD medium with 0.6% (v/v) acetic acid. Under 0.4% (v/v) acetic acid stress (pH 4.26), ethanol production and cell growth rates of T12 were 1.7 ± 0.1 and 0.061 ± 0.003 g/l h, while those of CE25 were 1.2 ± 0.1 and 0.048 ± 0.003 g/l h, respectively. FPS1 gene disruption in an industrial ethanologenic yeast thus increases cell growth and ethanol yield under acetic acid stress, which suggests the potential utility of FPS1 gene disruption for bioethanol production from renewable resources such as lignocelluloses.  相似文献   

10.
Enhanced biological phosphorus removal was performed in a continuous laboratory-scale two-reactor system with sludge recirculation over a 75-day period. Influent wastewater was a synthetic medium based on acetate, and the sludge age was kept at 12 days. The adapted sludge stored poly-β-hydroxyalkanoic acids (PHA) in the anaerobic reactor with a conversion ratio of 1.45 PHA/acetic acid (based on chemical O2 demand: COD/COD) and gave ratio of a phosphate-P release to acetic acid uptake of 0.51 P/CH3COOH (w/w). Fractionation of anaerobic and aerobic sludges showed that the main part of phosphorus taken up, was eluted in the trichloroacetic acid fraction indicating that it was polyphosphate. A total of 60% of the phosphorus in the aerobic sludge was solubilized in the trichloroacetic acid fraction, whereas this fraction accounted for only 32% of the phosphorus in the anaerobic sludge. Only 4% of the total phosphorus in the aerobic sludge and 2% in the anaerobic sludge was found in the EDTA fraction, indicating low amounts of metal-bound phosphates. Isolation on acetate-based agar medium showed that Acinetobacter strains were present in the sludge. However, a more complete analysis of the bacterial community of the sludge was obtained by creating a clone library based on the 16S rRNA gene. A total of 51 partial clone sequences were phylogenetically evaluated. The predominating group was found in the high-(G+C) (mol%) gram-positive bacterial subphylum (31% of the sequenced clones), while the gamma proteobacteria only constituted 9.8% of the clones. Received: 12 June 1997 / Received revision: 26 September 1997 / Accepted: 28 September 1997  相似文献   

11.
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

12.
J.C. DE REU, F.M. ROMBOUTS AND M.J.R. NOUT. 1995. During the soaking of soya beans according to an accelerated acidification method organic acids were formed, resulting in a pH decrease from 6·0 to 3·9. After 24 h of fermentation at 30°C, lactic acid was the major organic acid (2·1% w/v soak water), while acetic acid (0·3% w/v soak water) and citric acid (0·5% w/v soak water) were also found. During cooking with fresh water (ratio raw beans: water, 1: 6·5) the concentrations of lactate/lactic acid and acetate/acetic acid in the beans were reduced by 45% and 51%, respectively.
The effect of organic acids on the germination of Rhizopus olgosporus sporangiospores was studied in liquid media and on soya beans. Germination in aqueous suspensions was delayed by acetic acid: within 6 h no germination occurred at concentrations higher than 0·05% (w/v incubation medium), at pH 4·0. When soya beans were soaked in the presence of acetic acid, the inhibitory concentration depended on the pH after soaking. Lactic acid and citric acid enhanced germination in liquid medium, but not in tempe.
Inoculation of soya beans with R. oligosporus at various temperatures followed by incubation at 30°C resulted in both increased and decreased periods for the lag phase of fungal growth. A maximum difference of 3 h lag phase was found between initial bean temperatures of 25 and 37°C.
When pure cultures of homofermentative lactic acid bacteria were used in the initial soaking process, less lactic acid and acetic acid was formed during soaking than when the accelerated acidification method was used. This resulted in a reduction of the lag phase before growth of R. oligosporus by up to 4·7 h.  相似文献   

13.
嗜热子囊菌利用短链有机酸生产角质酶   总被引:1,自引:1,他引:0  
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

14.
A novel and high‐rate anaerobic sequencing bath reactor (ASBR) process was used to evaluate the hydrogen productivity of an acid‐enriched sewage sludge microflora at a temperature of 35 °C. In this ASBR process a 4 h cycle, including feed, reaction, settle, and decant steps, was repeatedly performed in a 5 L reactor. The sucrose substrate concentration was 20 g COD/L; the hydraulic retention time (HRT) was maintained at 12–120 h at the initial period and thereafter at 4–12 h. The reaction/settle period ratio, which is the most important parameter for ASBR operation was 1.7. The experimental results indicated that the hydrogenic activity of the sludge microflora was HRT‐dependent and that proper pH control was necessary for a stable operation of the bioreactor. The peak hydrogenic activity value was attained at an HRT of 8 h and an organic loading rate of 80 kg COD/m3 × day. Each mole of sucrose in the reactor produced 2.8 mol of hydrogen and each gram of biomass produced 39 mmol of hydrogen per day. An overly‐short HRT might deteriorate the hydrogen productivity. The concentration ratios of butyric acid to’acetic acid, as well as volatile fatty acid and soluble microbial products to alkalinity can be used as monitoring indicators for the hydrogenic bioreactor.  相似文献   

15.
Inhibition of the fermentation of acetate to methane and carbon dioxide by acetate was analyzed with an acetate-acclimatized sludge and with Methanosarcina barkeri Fusaro under mesophilic conditions. A second-order substrate inhibition model, q(ch(4) ) = q(m)S/[K(s) + S + (S/K(i))], where S was the concentration of undissociated acetic acid, not ionized acetic acid, could be applicable in both cases. The analysis resulted in substrate saturation constants, K(s), of 4.0 muM for the acclimatized sludge and 104 muM for M. barkeri. The threshold concentrations of undissociated acetic acid when no further acetate utilization was observed were 0.078 muM (pH 7.50) for the acclimatized sludge and 4.43 muM (pH 7.45) for M. barkeri. These kinetic results suggested that the concentration of undissociated acetic acid became a key factor governing the actual threshold acetate concentration for acetate utilization and that the acclimatized sludge in which Methanothrix spp. appeared dominant could utilize acetate better and survive at a lower concentration of undissociated acetic acid than could M. barkeri.  相似文献   

16.
In this work, a semi-continuous biological system was established to produce hydrogen and generate electricity by coupling the bioreactor to a fuel cell. Heat and acid pretreatments (at 35 and 55 °C) of a seed sludge used as inoculum were performed in order to increase hydrogen producers. Different initial glucose concentrations (IGC) were tested for heat pretreated inoculum at 35 °C to determine the optimum concentration of glucose that supported the highest hydrogen production. Results showed that the heat pretreated inoculums (35 °C) reached the highest hydrogen molar yield of 2.85 mol H2/mol glucose (0.014 L/h), which corresponds to the acetic acid pathway. At the optimum IGC (10 g/L, 35 °C) the hydrogen molar yield was 3.6 mol H2/mol glucose (0.023 L/h). The coupled bioreactor-fuel cell system yielded an output voltage of 1.06 V, power of 0.1 W (25 °C) and a current of 68 mA. The overall results suggest that high hydrogen molar yields can be obtained through the acetic acid pathway and that is feasible to generate electricity using hydrogen from the semi- continuous bioreactor.  相似文献   

17.
18.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

19.
A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.  相似文献   

20.
Separation of acetic acid from palm oil mill effluent (POME) to increase its concentration by an anion exchange resin was examined as a preliminary study for its recovery from POME that had been anaerobically treated by sludge from a palm oil mill. This paper concerns the acetic acid thus separated for producing bacterial polyhydroxyalkanoate (PHA) by Alcaligenes eutrophus. It was found that sludge particles in POME strongly inhibited the adsorption of acetic acid on the anion exchange resin. Removing the sludge particles from the POME facilitated the separation of acetic acid from the POME efficiently. The concentrated acetic acid thus obtained from anaerobically treated POME could be used as a substrate in the fed-batch production of polyhydroxyalkanoate by Alcaligenes eutrophus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号