首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A reversed-phase high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) detection was developed and validated for the quantification of 6-deoxy-6-demethyl-4-dedimethylamino-tetracycline (COL-3), a matrix metalloproteinase (MMPs) inhibitor, in rat serum. This simple, sensitive, rapid and reproducible assay involved a preliminary serum deproteinization by adding a mixture of acetonitrile-methanol-0.5 M oxalic acid (70:20:10 (v/v)), as the combined precipitant and metal blocking agent, into serum samples (2:1 (v/v)). An aliquot (20 microl) of the supernatant was injected into the HPLC system linked to a Waters XTerra RP(18) column (150 mm x 4.6 mm i.d., particle size 5 microm). The compound was eluted by a mixture of acetonitrile-methanol-0.01 M oxalic acid (40:10:50 (v/v), pH 2.00), as the mobile phase, and detected at the wavelength of 350 nm. The total running time was 10 min. The low and high concentration calibration curves were linear in the range of 50-1200 ng/ml and 1200-12,000 ng/ml, respectively. The intra- and inter-day coefficients of variation at three quality control concentrations of 100, 1200, and 12,000 ng/ml were all less than 6%, while the percent error ranged from -2.5 to 6.6%. The limit of quantitation (LOQ) for COL-3 in serum was 50 ng/ml. This assay was successfully employed to study the serum concentration-time profiles of COL-3 after its intravenous and oral administration in rats. The method with some minor modifications in sample pretreatment was also applicable to the determination of the concentrations of COL-3 in rat bile, urine and feces.  相似文献   

2.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay has been developed to allow determination of total (i.e. bound and unbound) and free (i.e. unbound) topotecan (TPT) in mouse plasma in the presence and absence of anti-TPT antibodies. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Nova-Pak C18 column (3.9 mm x 150 mm, 4 microm) protected by a Nova-Pak C18 guard column (3.9 mm x 20 mm, 4 microm), where 10 mM KH(2)PO(4)-methanol-triethylamine (72:26:2 (v/v/v), pH 3.5) was used as the mobile phase. Topotecan was quantified with fluorescence detection using an excitation wavelength of 361 nm and an emission wavelength of 527 nm. The retention time for the internal standard, acridine, and TPT were 7.4 and 9.0 min, respectively. The lower limit of quantitation (LOQ) for TPT was determined as 0.02 ng in mouse plasma and mouse plasma ultrafiltrate, corresponding to a concentration of 1 ng/ml in 20 microl mouse plasma. The assay was shown to be linear over a concentration range of 1-500 ng/ml. The recoveries of free and total TPT from spiked mouse plasma were within 10% of theoretical values (assessed at 1, 20 and 500 ng/ml). The validated HPLC assay was applied to evaluate TPT pharmacokinetics following administration of TPT to Swiss Webster mice and to hyperimmunized and control BALB/c mice. The assay has been shown to be capable for measuring total and free TPT in mouse plasma with high sensitivity and will allow the testing of the effect of anti-TPT antibodies on the disposition of TPT.  相似文献   

3.
A rapid and sensitive LC-MS-MS method for the determination of huperzine A in dog plasma using huperzine B as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using n-hexane-dichloromethane-2-propanol (300:150:15, v/v/v), chromatographed on a C(18) column (5 microm, 50 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-methanol-10mM ammonium acetate (35:40:25, v/v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. The assay was linear over the concentration range 0.05-20 ng/ml and intra- and inter-day precision over this range were <5.3% with good accuracy. The limit of detection in plasma was 0.01 ng/ml. The method was successfully applied to define plasma concentration-time curves of huperzine A in dogs after the last dose of an intramuscular injection (10 microg/kg per day for 15 days) of a sustained-release formulation of huperzine A.  相似文献   

4.
A fast liquid chromatographic method with tandem diode array-fluorescence detection for the simultaneous determination of in total 17 opium alkaloids and opioids is presented. Blank blood and urine samples (1 ml) were spiked with different concentrations of a standard mixture, as well as with the internal standard, butorphanol (2000 ng/ml). After solid-phase extraction, based on weak cation exchange (Bond Elut CBA SPE columns), the extracts were examined by HPLC-DAD-FL. By using a "high-speed" phenyl column (53 x 7.0 mm I.D., particle size 3 microm) eluted with a gradient system (A: water-methanol (90:10, v/v), B: methanol, both containing 25 mM triethylammoniumformate (pH(A) = 4.5)) all compounds could be baseline separated within 12 min. The method was validated and its applicability was demonstrated by the analysis of real-time forensic cases.  相似文献   

5.
A rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS-MS) method for the determination of metformin in human plasma using phenformin as internal standard has been developed and validated. Sample preparation of plasma involved acidification with acetic acid, deproteination with acetonitrile and washing with dichloromethane. Samples were then analyzed by HPLC on a short Nucleosil C18 column (5 microm, 50 mm x 4.6 mm i.d.) using a mobile phase consisting of acetonitrile:methanol:10mM ammonium acetate pH 7.0 (20:20:60, v/v/v) delivered at 0.65 ml/min. Detection was performed using an Applied Biosystems Sciex API 4000 mass spectrometer set at unit resolution in the multiple reaction monitoring (MRM) mode. Atmospheric pressure chemical ionization (APCI) was used for ion production. The assay was linear over the range 1-2000 ng/ml with intra- and inter-day precision of <8.6% and accuracy in the range 91-110%. The limit of detection was 250 pg/ml in plasma. The method was successfully applied to a clinical pharmacokinetic study of an extended-release tablet of metformin hydrochloride (500 mg) administered as a single oral dose.  相似文献   

6.
7.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

8.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

9.
Huperzine-A (Hup-A), a biologically potent, reversible acetylcholinesterase inhibitor for the treatment of Alzheimer disease (AD) in China, has very low blood concentration. In order to study the pharmacokinetics of newly developed Hup-A transdermal patches in animal, a rapid and sensitive ion-pair reverse-phase high performance liquid chromatography (RP-HPLC) method for the determination of Hup-A in beagle dog serum using mebendazole as internal standard has been developed and validated. The analyte and internal standard were extracted from serum using chloroform-isopropanol (95:5, v/v), analyzed on a C (18) column (5 microm, 150 mm x 4.6 mm i.d.) with a mobile phase consisting of methanol-water-glacial acetic acid (50:48.5:1.5, v/v/v), using sodium dodecylsulfonate as an ion-pair reagent, and detected with UV detector at 313 nm. The chromatographic run time was within 15 min. The assay was linear over the concentration range of 1-12 ng/ml and intra- and inter-day precision over this range was not more than 12.8%. The limit of quantification in serum was 1 ng/ml. The method was successfully applied to characterize the Hup-A concentration-time profiles and study the single and multiple doses phamacokinetics of Hup-A transdermal patches in beagle dogs. The pharmacokinetic study results showed that Hup-A patches has the characteristic of sustained or controlled drug release in vivo.  相似文献   

10.
The validation of a LC/MS/MS method for the determination of 8-methoxypsoralen (8-MOP) in human plasma and microdialysates after topical application is described. Plasma samples were extracted by liquid-liquid extraction with diisopropylether using 4,5',8-trimethylpsoralen (TMP) as internal standard. Chromatographic separation of plasma sample extracts was carried out using a short narrow-bore Nucleosil C18 column (30 mm x 2.0 mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (80:20, v/v). For mass spectrometric analysis an API 3000 triple quadrupole mass spectrometer was employed. The mass transitions used were m/z 217.2-->174.0 for 8-MOP and m/z 229.1-->142.1 for TMP. Microdialysis samples diluted with an equal amount of acetonitrile did not require any extraction and were analyzed directly on a narrow-bore Nucleosil C18 column (70 mm x 2.0mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (50:50, v/v) with the mass transition m/z 217.2-->174.0. The assays were validated over the concentration ranges of 0.5-50 ng/ml for plasma samples and 0.25-50 ng/ml for microdialysates, respectively.  相似文献   

11.
A simple and sensitive column-switching high-performance liquid chromatographic method was developed for the simultaneous determination of omeprazole and its two main metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in human plasma. Omeprazole, its two metabolites and lansoprazol as an internal standard were extracted from 1 ml of alkalinized plasma sample using diethyl ether-dichloromethane (45:55, v/v). The extract was injected into a column I (TSK-PW precolumn, 10 microm, 35 mm x 4.6 mm i.d.) for clean-up and column II (Inertsil ODS-80A column, 5 microm, 150 mm x 4.6mm i.d.) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (92:8 v/v, pH 7.0) for clean-up and phosphate buffer-acetonitrile-methanol (65:30:5 v/v/v, pH 6.5) for separation, respectively. The peak was detected with an ultraviolet detector set at a wavelength of 302 nm, and total time for chromatographic separation was approximately 25 min. The validated concentration ranges of this method were 3-2000 ng/ml for omeprazole, 3-50 ng/ml for 5-hydroxyomeprazole and 3-1000 ng/ml for omeprazole sulfone. Mean recoveries were 84.3% for omeprazole, 64.3% for 5-hydroxyomeprazole and 86.1% for omeprazole sulfone. Intra- and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole, 4.6 and 5.0% for 5-hydroxyomeprazole and 4.6 and 4.9% for omeprazole sulfone at the different concentrations. The limits of quantification were 3 ng/ml for omeprazole and its metabolites. This method was suitable for use in pharmacokinetic studies in human volunteers, and provides a useful tool for measuring CYP2C19 activity.  相似文献   

12.
A sensitive high-performance liquid chromatographic assay has been developed and validated for the determination of methyl N-[5-[[4-(2-pyridinyl)-1-piperazinyl]carbonyl]-1H-benzimidazol-2-yl] carbamate (CDRI compound 81/470) in normal rat blood. The method described herein is simple, with improved selectivity and sensitivity over a previously reported HPLC method. The limit of quantitation is 10 ng/ml (method 1) and 2.5 ng/ml (method 2) in blood, as compared with 40 ng/ml for the previous method. The standard curve in blood is linear over the concentration range 10–1000 ng/ml in method 1 and 2.5–1000 ng/ml in method 2 and the extraction recovery is higher than 80% for both methods.  相似文献   

13.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

14.
A rapid and specific HPLC method has been developed and validated for simultaneous determination of clobazam, the anticonvulsant agent, and its major metabolite in human plasma. The sample preparation was a liquid-liquid extraction with tuloene yielding almost near 100% recoveries of two compounds. Chromatographic separation was achieved with a Chromolith Performance RP-18e 100 mm x 4.6mm column, using a mixture of a phosphate buffer (pH 3.5; 10mM)-acetonitrile (70:30, v/v), in isocratic mode at 2 ml/min at a detection wave-length of 228 nm. The calibration curves were linear (r(2)>0.998) in the concentration range of 5-450 ng ml(-1). The lower limit of quantification was 5 ng ml(-1) for two compounds studied. The within- and between-day precisions in the measurement of QC samples at four tested concentrations were in the range of 0.89-9.1% and 2.1-10.1% R.S.D., respectively. The developed procedure was applied to assess the pharmacokinetics of clobazam and its major metabolite following administration of a single 10mg oral dose of clobazam to healthy volunteers.  相似文献   

15.
A sensitive and rapid high-performance liquid chromatography (HPLC) method with solid-phase extraction (SPE) to simultaneously determine albiflorin and paeoniflorin in rat serum was described. Serum samples were pretreated with solid-phase extraction using Extract-Clean cartridges, and the extracts were analyzed by HPLC on a reversed-phase C(18) column and a mobile phase of acetonitrile-0.03% formic acid (17:83 (v/v)) with ultraviolet detection at 230 nm. Pentoxifylline was used as the internal standard (IS). The linear ranges of the calibration curves were 29-1450 ng/ml for albiflorin and 10-2000 ng/ml for paeoniflorin. The intra- and inter-day precisions (R.S.D.) were 相似文献   

16.
An analytical method based on high-performance liquid chromatography (HPLC) with ultraviolet detection (269 nm) was developed for the determination of pioglitazone in human plasma. Rosiglitazone was used as an internal standard. Chromatographic separation was achieved with a reversed-phase Apollo C18 column and a mobile phase of methanol-acetonitrile-mixed phosphate buffer (pH 2.6; 10mM) (40:12:48, v/v/v) with a flow rate of 1.2 ml/min. The calibration curve was linear over the range of 50-2000 ng/ml (r(2)>0.9987) and the lower limit of quantification was 50 ng/ml. The method was validated with excellent sensitivity, accuracy, precision, recovery and stability. The assay has been applied successfully to a pharmacokinetic study with human volunteers.  相似文献   

17.
A sensitive high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantitation of the novel anticancer agent topotecan and topotecan as the total of its lactone and carboxylate forms in human plasma. Linear response in analyte standard peak area were observed over the concentration range 0.05–10 ng/ml using 100-μl plasma samples. The instability of the drug in the biological matrix necessitated that the plasma fraction was obtained within 5 min after blood sampling by centrifugation, immediately followed by protein precipitation with cold methanol (−30°C). Stability studies have indicated that topotecan is stable in these methanolic extracts for at least 4.5 months at −30°C and 2 months at −70°C. For the total determination of the lactone plus lactone ring-opened forms of the drug as topotecan, plasma samples were deproteinated with methanol and, subsequently, acidified with 7% (v/v) perchloric acid. Plasma samples for the measurement of total levels of the lactone and the ring-opened forms of the topotecan were stable for at least 4.5 months when stored at −30°C. After centrifugation, the supernatants were analysed by HPLC using a Zorbax SB-C18 Stable Bond column and methanol-0.1 M hexane-1-sulfonic acid in methanol-0.01 M N,N,N′,N′-tetramethylethylenediamine (TEMED) in distilled water pH 6.0 (25:10:65, v/v) as the mobile phase. Detection was performed fluorimetrically. Within-run and between-run precision was always less than 12.1% in the concentration range of interest (0.05–10.0 ng/ml). The limit of quantitation is 0.05 ng/ml. Accuracy measurements ranged between 87.6 and 113.5%.  相似文献   

18.
A sensitive and specific LC/MS/MS method has been developed and validated for determination of ragaglitazar (NNC 61-0029 or DRF 2725) in human plasma. After solid-phase extraction (SPEC((R)) PLUS C(8)) of plasma, separation was performed on a Symmetry Shield RP8 column (mobile phase: acetonitrile: 10 mM ammonium acetate, pH 5.6 (40:60 v/v)). Two ranges were validated having LLOQs of either 0.500 or 100 ng/ml and linearity up to either 500 or 50000 ng/ml. The intra-assay precision and accuracy were 1.1% to 15.7% and 85.8% to 118.2% (range 0.500-500 ng/ml) and 2.0% to 8.8% and 92.9% to 104.8% (range 100-50000 ng/ml). The method was applied for determination of ragaglitazar in plasma from phase 1 and 2 clinical studies.  相似文献   

19.
A liquid chromatography-electrospray tandem mass spectrometry method was developed and validated to quantitate solifenacin in human plasma. The assay was based on protein precipitation with methanol and liquid chromatography performed on a pentafluorophenylpropylsilica column (50×4mm, 3μm particles), the mobile phase consisted of methanol - 100mM ammonium acetate containing 1% of formic acid (90:10, v/v). Quantification was through positive-ion mode and selected reaction monitoring at m/z 363→193 and 368→198 for solifenacin and the internal standard solifenacin-D(5), respectively. The lower limit of quantitation was 0.47ng/ml using 0.25ml of plasma and linearity was demonstrated up to 42ng/ml. Intra-assay and inter-assay precision expressed by relative standard deviation was less than 11% and inaccuracy did not exceed 11% at all levels. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

20.
A rapid, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of clarithromycin in human plasma. Liquid-liquid extraction of clarithromycin and norverapamil (as internal standard) from plasma samples was performed with n-hexane/1-butanol (98:2, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a CN column (250 mm x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (32:68, v/v), pH 4.5. Detection was made at 205 nm and analyses were run at a flow-rate of 1.0 ml/min at 40 degrees C. The analysis time was less than 11 min. The method was specific and sensitive with a quantification limit of 31.25 ng/ml and a detection limit of 10 ng/ml in plasma. The mean absolute recovery of clarithromycin from plasma was 95.9%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 9.5%. Linearity was assessed in the range of 31.25-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method was used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号