首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercellular communication via intracellular calcium oscillations   总被引:3,自引:0,他引:3  
In this letter, we present the results of a simple model for intercellular communication via calcium oscillations, motivated in part by a recent experimental study. The model describes two cells (a "donor" and "sensor") whose intracellular dynamics involve a calcium-induced, calcium release process. The cells are coupled by assuming that the input of the sensor cell is proportional to the output of the donor cell. As one varies the frequency of calcium oscillations of the donor cell, the sensor cell passes through a sequence of N : M phase-locked regimes and exhibits a "Devil's staircase" behavior. Such a phase-locked response has been seen experimentally in pulsatile stimulation of single cells. We also study a stochastic version of the coupled two-cell model. We find that phase locking holds for realistic choices for the cell volume.  相似文献   

2.
Opioid receptors are seven transmembrane domain Gi/G0 protein-coupled receptors, the activation of which stimulates a variety of intracellular signalling mechanisms including activation of inwardly rectifying potassium channels, and inhibition of both voltage-operated N-type Ca2+ channels and adenylyl cyclase activity. It is now apparent that like many other Gi/G0-coupled receptors, opioid receptor activation can significantly elevate intracellular free Ca2+ ([Ca2+]i), although the mechanism underlying this phenomenon is not well understood. In some cases opioid receptor activation alone appears to elevate [Ca2+]i, but in many cases it requires concomitant activation of Gq-coupled receptors, which themselves stimulate Ca2+ release from intracellular stores via the inositol phosphate pathway. Given the number of Ca2+-sensitive processes known to occur in cells, there are therefore a myriad of situations in which opioid receptor-mediated elevations of [Ca2+](i) may be important. Here, we review the literature documenting opioid receptor-mediated elevations of [Ca2+]i, discussing both the possible mechanisms underlying this phenomenon and its potential physiological relevance.  相似文献   

3.
We have numerically studied the effect of a particular kind of non-Gaussian colored noise (NGN), characterized by the deviation q from Gaussian noise (q = 1), on intracellular cytosolic calcium (Ca2+) oscillations. It is found that, as q is increased, the Ca2+ oscillation regularity increases and reaches a best performance at an optimal q, and then decreases with further increasing q, which represents the occurrence of coherence resonance, i.e., the most regular Ca2+ oscillations. Similar phenomena occur for different values of noise intensity and correlation time of the NGN. This phenomenon of deviation-optimized Ca2+ oscillations show that, external non-Gaussian noises of different types can enhance and even optimize the intracellular Ca2+ oscillations. This result provides new insights into the constructive roles and potential applications of non-Gaussian noises in intracellular cytosolic Ca2+ oscillations.  相似文献   

4.
Parathyroid hormone secretion isexquisitely sensitive to small changes in serum Ca2+concentration, and these responses are transduced via theCa2+-sensing receptor (CaR). We utilized heterologousexpression in HEK-293 cells to determine the effects of small,physiologically relevant perturbations in extracellularCa2+ on CaR signaling viaphosphatidylinositol-phospholipase C, using changes in fura 2 fluorescence to quantify intracellular Ca2+. Chronicexposure of CaR-transfected cells to Ca2+ in the range from0.5 to 3 mM modulated the resting intracellular Ca2+concentration and the subsequent cellular responses to acute extracellular Ca2+ perturbations but had no effect onthapsigargin-sensitive Ca2+ stores. Modest,physiologically relevant increases in extracellular Ca2+concentration (0.5 mM increments) caused sustained (30-40 min) low-frequency oscillations of intracellular Ca2+ (~45 speak to peak interval). Oscillations were eliminated by 1 µMthapsigargin but were insensitive to protein kinase inhibitors (staurosporine, KN-93, or bisindolylmaleimide I). Staurosporine didincrease the fraction of cells oscillating at a given extracellular Ca2+ concentration. Serum Ca2+ concentrationsthus chronically regulate cells expressing CaR, and small perturbationsin extracellular Ca2+ alter both resting intracellularCa2+ as well as Ca2+ dynamics.

  相似文献   

5.
In a wide range of non-linear dynamical systems, noise may enhance the detection of weak deterministic input signals. Here, we demonstrate this phenomenon for transmembrane signaling in a hormonal model system of intracellular Ca(2+) oscillations. Adding Gaussian noise to a subthreshold extracellular pulsatile stimulus increased the sensitivity in the dose-response relation of the Ca(2+) oscillations compared to the same noise signal added as a constant mean level. These findings may have important physiological consequences for the operation of hormonal and other physiological signal transduction systems close to the threshold level.  相似文献   

6.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

7.
8.
In non-excitable cells, several kinds of agonist-induced oscillations of cytosolic Ca2+ concentration ([Ca2+]i) are known which differ in their form and generation mechanism. The oscillation source is, as a rule, the regulation of Ca2+ mobilization from intracellular stores through inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and in some cases through ryanodine receptors (RyR). In the present work, oscillations in single mature adipocytes of mice epididymal fat on the ninth day of cultivation are studied. Cells were stimulated by acetylcholine (ACh) or by fetal bovine serum (FBS). ACh at a concentration of 0.1–5 μM evoked a rise in [Ca2+]i to a peak and subsequent oscillations whose peaks and troughs declined along with increasing amplitude while frequency decreased. In most cells oscillations lasted less than 5 min. The new constant or interspike level exceeded the initial one or was equal to it (at 1 μM ACh). The removal of ACh stopped oscillations immediately. An inhibitor of phospholipase C (U73122) or of IP3R (Xestospongin C) did not affect the pattern of responses, which means that the generation of oscillations does not depend on IP3. At the same time, suppression of responses by ryanodine, which blocks RyR, was observed. Besides, oscillatory responses were abolished by inhibitors of phosphatidylinositol 3-kinase, NO synthase, and cGMP-dependent protein kinase. FBS (1%) initiated oscillations characterized by return of [Ca2+]i after each peak to the baseline level, occurring prior to stimulation, and by maintenance of roughly constant amplitude and frequency (of the order of 1 min−1). Oscillations persisted longer (more than 15 min in 87% of cells) than with ACh. Repeated stimulation of cells by FBS revealed a strongly reduced sensitivity after 1 h of rest, whereas responses to ACh partially restored within 3 min. Investigation of the involvement of IP3R and RyR in FBS-induced oscillations gave completely inverse results relative to ACh and demonstrated a leading role of IP3R without a considerable contribution of RyR and of its activation pathways. With both stimuli, Ca2+ entry through the plasma membrane was necessary only as a support of oscillations. The results show that in adipocytes different agonists can engage distinct subsystems of Ca2+ signaling, each of them generating oscillations with a specific temporal pattern.  相似文献   

9.
Spontaneous oscillations of intracellular calcium and growth hormone secretion   总被引:10,自引:0,他引:10  
A novel combination of two single cell assays allowed the simultaneous measurement of intracellular calcium concentration and hormone secretion in normal pituitary cells. [Ca2+]i was recorded using the fluorescent Ca2+ indicator fura-2 and digital imaging microscopy. This technique was combined with a reverse hemolytic plaque assay for growth hormone in order to identify somatotropes and quantitate the amount of hormone released. A dynamic profile of rhythmic calcium oscillations was found in spontaneously secreting somatotropes. Each somatotrope displayed a distinct frequency (one pulse every 5-30 s) and amplitude (range 50-450 nM) generated asynchronously from cell to cell. The amount of growth hormone (GH) released correlated directly with both the frequency and amplitude of calcium oscillations at the level of single GH cells. Furthermore, calcium excursions in somatotropes were rapidly suppressed by either (i) removal of extracellular calcium, (ii) somatostatin (1 mM), or (iii) the calcium channel blockers cobalt (2 mM) and verapamil (100 microM). These observations demonstrate that spontaneous calcium oscillations are characteristic for normal somatotropes. These oscillations are related to spontaneous hormone secretion and due to influx through calcium channels in the membrane. Somatostatin, the physiologic inhibitor of GH secretion, suppresses calcium transients. These findings suggest that the intracellular signaling information may be encoded both in the frequency and amplitude of calcium oscillations.  相似文献   

10.
A Atri  J Amundson  D Clapham    J Sneyd 《Biophysical journal》1993,65(4):1727-1739
We construct a minimal model of cytosolic free Ca2+ oscillations based on Ca2+ release via the inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channel (IP3R) of a single intracellular Ca2+ pool. The model relies on experimental evidence that the cytosolic free calcium concentration ([Ca2+]c) modulates the IP3R in a biphasic manner, with Ca2+ release inhibited by low and high [Ca2+]c and facilitated by intermediate [Ca2+]c, and that channel inactivation occurs on a slower time scale than activation. The model produces [Ca2+]c oscillations at constant [IP3] and reproduces a number of crucial experiments. The two-dimensional spatial model with IP3 dynamics, cytosolic diffusion of IP3 (Dp = 300 microns 2 s-1), and cytosolic diffusion of Ca2+ (Dc = 20 microns 2 s-1) produces circular, planar, and spiral waves of Ca2+ with speeds of 7-15 microns.s-1, which annihilate upon collision. Increasing extracellular [Ca2+] influx increases wave speed and baseline [Ca2+]c. A [Ca2+]c-dependent Ca2+ diffusion coefficient does not alter the qualitative behavior of the model. An important model prediction is that channel inactivation must occur on a slower time scale than activation in order for waves to propagate. The model serves to capture the essential macroscopic mechanisms that are involved in the production of intracellular Ca2+ oscillations and traveling waves in the Xenopus laevis oocyte.  相似文献   

11.
Given the ubiquitous nature of signal-induced Ca2+ oscillations, the question arises as to how cellular responses are affected by repetitive Ca2+ spikes. Among these responses, we focus on those involving protein phosphorylation. We examine, by numerical simulations of a theoretical model, the situation where a protein is phosphorylated by a Ca(2+)-activated kinase and dephosphorylated by a phosphatase. This reversible phosphorylation system is coupled to a mechanism generating cytosolic Ca2+ oscillations; for definiteness, this oscillatory mechanism is based on the process of Ca(2+)-induced Ca2+ release. The analysis shows that the average fraction of phosphorylated protein increases with the frequency of repetitive Ca2+ spikes; the latter frequency generally rises with the extent of external stimulation. Protein phosphorylation therefore provides a mechanism for the encoding of the external stimulation in terms of the frequency of signal-induced Ca2+ oscillations. Such a frequency encoding requires precise kinetic conditions on the Michaelis-Menten constants of the kinase and phosphatase, their maximal rates, and the degree of cooperativity in kinase activation by Ca2+. In particular, the most efficient encoding of Ca2+ oscillations based on protein phosphorylation occurs in conditions of zero-order ultrasensitivity, when the kinase and phosphatase are saturated by their protein substrate. The kinetic analysis uncovers a wide variety of temporal patterns of phosphorylation that could be driven by signal-induced Ca2+ oscillations.  相似文献   

12.
J D Lechleiter  D E Clapham 《Cell》1992,69(2):283-294
Following receptor activation in Xenopus oocytes, spiral waves of intracellular Ca2+ release were observed. We have identified key molecular elements in the pathway that give rise to Ca2+ excitability. The patterns of Ca2+ release produced by GTP-gamma-S and by inositol 1,4,5-trisphosphate (IP3) are indistinguishable from receptor-induced Ca2+ patterns. The regenerative Ca2+ activity is critically dependent on the presence of IP3 and on the concentration of intracellular Ca2+, but is independent of extracellular Ca2+. Broad regions of the intracellular milieu can be synchronously excited to initiate Ca2+ waves and produce pulsating foci of Ca2+ release. By testing the temperature dependence of wavefront propagation, we provide evidence for an underlying process limited by diffusion, consistent with the elementary theory of excitable media. We propose a model for intracellular Ca2+ signaling in which wave propagation is controlled by IP3-mediated Ca2+ release from internal stores, but is modulated by the cytoplasmic concentration and diffusion of Ca2+.  相似文献   

13.
14.
In many biological systems, cells display spontaneous calcium oscillations (CaOs) and repetitive action-potential firing. These phenomena have been described separately by models for intracellular inositol trisphosphate (IP3)-mediated CaOs and for plasma membrane excitability. In this study, we present an integrated model that combines an excitable membrane with an IP3-mediated intracellular calcium oscillator. The IP3 receptor is described as an endoplasmic reticulum (ER) calcium channel with open and close probabilities that depend on the cytoplasmic concentration of IP3 and Ca2+. We show that simply combining this ER model for intracellular CaOs with a model for membrane excitability of normal rat kidney (NRK) fibroblasts leads to instability of intracellular calcium dynamics. To ensure stable long-term periodic firing of action potentials and CaOs, it is essential to incorporate calcium transporters controlled by feedback of the ER store filling, for example, store-operated calcium channels in the plasma membrane. For low IP3 concentrations, our integrated NRK cell model is at rest at -70 mV. For higher IP3 concentrations, the CaOs become activated and trigger repetitive firing of action potentials. At high IP3 concentrations, the basal intracellular calcium concentration becomes elevated and the cell is depolarized near -20 mV. These predictions are in agreement with the different proliferative states of cultures of NRK fibroblasts. We postulate that the stabilizing role of calcium channels and/or other calcium transporters controlled by feedback from the ER store is essential for any cell in which calcium signaling by intracellular CaOs involves both ER and plasma membrane calcium fluxes.  相似文献   

15.
16.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

17.
It seems likely that the operation of the vacuolar mechanism of active transport of water (VMATW) is based on the following. An exceeding osmotic pressure is created within an originally small vacuole (e. g. due to rapid enzymatis hydrolysis of macromolecules inside the vacuole) and consequently water enters the vacuole, as well as molecules and ions according to the gradients of their chemical potentials. After a while the contents of the swelling vacuole is thrown out to the external medium. An analysis of the efficiency of VMATW system in the stationary case shows that the efficiency of VMATW can be rather high to create the ionic heterogeneity.  相似文献   

18.
19.
Calcium has been established as a key messenger in both intra- and intercellular signaling. Experimentally observed intracellular calcium responses to different agonists show a variety of behaviors from simple spiking to complex oscillatory regimes. Here we study typical experimental traces of calcium oscillations in hepatocytes obtained in response to phenylephrine and ATP. The traces were analyzed with methods of nonlinear time series analysis in order to determine the stochastic/deterministic nature of the intracellular calcium oscillations. Despite the fact that the oscillations appear, visually, to be deterministic yet perturbed by noise, our analyses provide strong evidence that the measured calcium traces in hepatocytes are prevalently of stochastic nature. In particular, bursting calcium oscillations are temporally correlated Gaussian series distorted by a monotonic, instantaneous, time-independent function, whilst the spiking behavior appears to have a dynamical nonlinear component whereby the overall determinism level is still low. The biological importance of this finding is discussed in relation to the mechanisms incorporated in mathematical models as well as the role of stochasticity and determinism at cellular and tissue levels which resemble typical statistical and thermodynamic effects in physics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号