首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

2.
Glucose metabolism was studied as evidenced by the sugar and pyruvic acid levels in blood and glycogen and pyruvic acid content of tissues in euthyroid, hypothyroid and hyperthyroid rats by giving insulin. Results show that in a normal thyroxine-excess insulin state, the rise in blood sugar was less, glycogenesis was much enhanced and glycolysis was reduced in comparison to these data in the euthyroid state. When tyroxine deficiency was associated with excess insulin, glycogenesis was enhanced further and an almost complete inhibition of glycolysis was observed. In excess thyroxine-excess insulin state glycogenesis was increased at the expense of glycolysis in comparison to the finding in the hyperthyroid state. Thus exogenous insulin in the euthyroid state altered the pattern of carbohydrate metabolism enhancing glycogenesis and inhibiting glycolysis. In a low thyroxine-excess insulin state, further enhancement of glycogenesis and inhibition of glycolysis were observed. But in an excess thyroxine-excess insulin state, the higher thyroxine activity was somewhat neutralized by higher insulin action allowing glycogenesis with glucose to proceed to some extent.  相似文献   

3.
4.
The rapid, transient rise in the intracellular concentration of cyclic AMP which follows addition of L-epinephrine to isolated fat cells is completely prevented by an ATP analog, α,β-methylene-adenosine-5′-triphosphate [Ap(CH2)pp], a competitive inhibitor of adenylate cyclase activity in liver and fat cell membrane preparations. The concentration of cyclic AMP falls distinctly below that in the basal state after incubating fat cells for seven minutes in the presence of Ap(CH2)pp. The results are consistent with the view that the ATP analog is also an effective in vivo inhibitor of adenylate cyclase activity, and that intracellular cyclic AMP levels are normally delicately balanced by very rapid processes of synthesis and degradation. Epinephrine-induced lipolysis in fat cells is not inhibited but is instead enhanced by Ap(CH2)pp. This is probably explained by the ability of the analog to act (like ATP) as a high-energy phosphate donor, an effect which is independent of its inhibition of adenylate cyclase activity. The predominant effect of this compound on glucose oxidation by fat cells also appears to be the result of this property since its effects are mimicked by ATP.  相似文献   

5.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

6.
The effects of adenosine, N6-phenylisopropyl adenosine and 2',5'-dideoxyadenosine on lipolysis and cyclic AMP accumulation, in hamster adipocytes treated with cholera toxin, were studied. Cholera toxin caused an increase in lipolysis and cyclic AMP accumulation that was dependent upon the concentration of toxin and the length of time cells were exposed to the toxin. When N6-phenylisopropyl adenosine or 2',5'-dideoxyadenosine were present, the lipolytic and cyclic AMP responses to cholera toxin were inhibited. The adenosine analogues were equally effective inhibitors of lipolysis and cyclic AMP accumulation, when they were added 1 or 2 h after exposure to the toxin. Enzymatic removal of endogenously produced adenosine with adenosine deaminase potentiated both the lipolytic and cyclic AMP responses to cholera toxin. In addition, the inhibitory effects of N6-phenylisopropyl adenosine, 2'5'-dideoxyadenosine and clonidine on lipolysis and cyclic AMP were enhanced consequent to enzymatic removal of adenosine. These data show responses of intact fat cells to N6-phenylisopropyl adenosine, 2',5'-dideoxyadenosine or removal of endogenous adenosine and provide evidence for an adenosine sensitivity of fat cells exposed to cholera toxin.  相似文献   

7.
Digitonin-permeabilized adipocytes were used to study the coupling of adenylate cyclase (AC) to lipolysis in exercise-trained rats. Isoproterenol-(IPR) stimulated lipolysis in permeabilized cells was significantly greater in trained than in control rats. Under essentially identical conditions, the dose-response curve for IPR stimulation of AC activity in the absence of 3-isobutyl-1-methylxanthine was similar in trained and control rats. However, the potency of stimulation by IPR as a percentage of the basal level was greater in trained rats. AC activity and lipolysis in the presence of 3-isobutyl-1-methylxanthine were also significantly greater in trained than in control rats. Least-squares analysis by plotting the log AC vs. lipolysis values showed that the regression coefficient was about three-fold greater in trained than in control rats. The concentration of endogenous adenosine 3',5'-cyclic monophosphate (cAMP) needed to produce a half-maximal lipolytic response was 18.58 and 10.81 pmol.min-1.10(6) cells-1 in control and trained rats, respectively. Thus a positive relationship existed between lipolysis and AC activity, with a tighter coupling in trained rats. Lipolysis in response to exogenous cAMP tended to be greater in trained than in control rats, and the difference was statistically significant for 50 microM and 10 mM cAMP. Our finding support the concept that the major mechanism of enhanced lipolysis in trained rats was an increase in the activity of enzymatic step(s) distal to cAMP.  相似文献   

8.
A local renin-angiotensin system (RAS) that may be involved in their regulatory functions has been identified in hypothalamus and pituitary. Altered thyroid status induces modifications in the secretory function of hypothalamus and pituitary. However, few studies have analyzed the role of the RAS in hypothalamus and, to our knowledge, there is no data on the pituitary RAS during thyroid dysfunction. In the present study, angiotensinase activities (glutamyl, aspartyl and alanyl aminopeptidase: GluAP, AspAP and AlaAP, respectively) were studied in hypothalamus and in the anterior and posterior lobes of pituitary of euthyroid, hypothyroid and hyperthyroid adult male rats. In the anterior pituitary, compared with euthyroid and hyperthyroid rats, hypothyroid animals showed a highly significant increase of GluAP and AspAP activities; the percentage increase in GluAP was markedly higher than the percentage increase in AspAP. This suggests an increased metabolism of angiotensin (Ang) I and Ang II to des-Asp 1-Ang I and Ang III, respectively. We also observed an increase of Ang III-degrading activity (AlaAP) in the hypothalamus of hyperthyroid rats in soluble fraction. Increased Ang I and Ang II metabolism in the anterior pituitary of hypothyroid rats and increased metabolism of Ang III in the hypothalamus of hyperthyroid animals may be related to alterations in the secretory function of hypothalamus and pituitary in these thyroid dysfunctions.  相似文献   

9.
10.
Adipocytes from rabbits are relatively insensitive to catecholamines or forskolin. However, the combination of catecholamines plus forskolin increased cyclic AMP accumulation and lipolysis much more than either agent alone. Pertussis toxin treatment also restored sensitivity to catecholamines. No defect in activation by catecholamines of adenylate cyclase was seen in isolated membranes incubated in the presence of GTP. Rabbit adipocytes appear to have an excess of the inhibitory guanine nucleotide binding protein (Ni). However, in plasma membranes this protein appeared to be relatively inactive as there was an activation of adenylate cyclase activity by catecholamines in the presence of GTP. These data suggest that in intact rabbit adipocytes catecholamines and forskolin are ineffective as stimulators of adenylate cyclase due to an excess of inhibitory guanine nucleotide binding proteins.  相似文献   

11.
Forskolin at 10 muM caused a 100-fold increase in the intracellular concentration of cyclic AMP and a 6-fold increase in glycerol release in the human adipocyte. These responses are comparable to those prompted by 10 muM isoproterenol. The effects of forskolin on cyclic AMP and lipolysis were dose-dependent. Alpha-2 adrenergic activation, achieved with 10 muM epinephrine and 30 muM propranolol, significantly inhibited forskolin-stimulated cyclic AMP accumulation and glycerol release, shifting the dose-response curves to the right. Forskolin at 10 muM caused a 4.5-fold increase in the adenylate cyclase activity of human adipocyte membranes. When either isoproterenol or epinephrine (0.1 mM) was combined with forskolin, the magnitude of response was substantially greater than the sum of responses achieved by each agent incubated alone.  相似文献   

12.
In testicular Leydig cells, forskolin causes the expected stimulation of cAMP and testosterone production and potentiates gonadotropin-induced responses, when present in concentrations of 1-10 microM. In addition, when added at lower doses that did not affect cAMP generation and testosterone responses (100 nM), forskolin caused an increase in sensitivity to hormonal stimulation for all cAMP pools (extracellular, intracellular, and receptor-bound) and a 70% reduction in the ED50 for human chorionic gonadotropin (hCG) stimulation of testosterone production. Forskolin-induced increases in receptor-bound cAMP were less effective than those elicited by hCG in stimulating steroidogenesis. In contrast to the well-known stimulatory actions of forskolin, low doses of the diterpene (in the picomolar to nanomolar range) markedly inhibited the production of cAMP and testosterone. Such inhibitory actions of low-dose forskolin were prevented by preincubation of Leydig cells with pertussis toxin before addition of forskolin and/or hCG. Low concentrations of forskolin also inhibited adenylate cyclase activation by GTP and luteinizing hormone, and this effect was prevented by pretreatment of cell membranes with pertussis toxin. These studies have defined the stimulatory effects of forskolin on Leydig-cell cAMP pools, including potentiation of the hormonal increase in receptor-bound cyclic AMP by forskolin, and have provided additional evidence for the functional importance of cAMP compartmentalization during hormonal stimulation of steroidogenesis. We have also demonstrated a novel, high-affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation, an effect that appears to be mediated by the Ni guanine nucleotide regulatory subunit of adenylate cyclase.  相似文献   

13.
14.
Somatostatin inhibits both forskolin and (-) isoproterenol-stimulated cyclic AMP accumulation in AtT-20 cells. Pretreatment of these cells with pertussis toxin prevents somatostatin's inhibitory effects on cyclic AMP production. This pretreatment also enhances the cyclic AMP response to forskolin and (-) isoproterenol without affecting basal cyclic AMP levels. The blockade of somatostatin's inhibitory effect was dependent both on the time of preincubation and concentration of pertussis toxin used. The rise in forskolin-stimulated cyclic AMP formation following pertussis toxin treatment preceded the blockade of somatostatin's inhibitory actions. The results suggest that somatostatin acts through an inhibitory guanine nucleotide regulatory protein to affect adenylate cyclase activity.  相似文献   

15.
The high-affinity guanine nucleotide-sensitive receptor sites for melatonin in the mammalian hypothalamus and pars tuberalis mediate inhibition of adenylate cyclase (AC) activity. Therefore, we have examined whether similar sites in the chick brain and retina also modulate AC activity. Melatonin did not alter basal or forskolin-stimulated AC activity in whole forebrain or retinal homogenates. In contrast, melatonin significantly inhibited forskolin-stimulated AC activity in forebrain synaptosomal membranes and partially purified retinal membranes in a concentration-dependent manner. Maximal inhibition (approximately 25-30%) of stimulated AC activity was observed at 10-100nM melatonin, while the concentrations (EC50's) which caused half-maximal effects were 22 +/- 6 pM and 30 +/- 5 pM in the brain and retina respectively. Pretreatment of forebrain slices with pertussis toxin abolished the inhibitory effect of melatonin on stimulated AC activity. These data provide the first evidence that melatonin suppresses AC activity in the chick CNS via a pertussis toxin-sensitive G-protein.  相似文献   

16.
Plants elaborate a variety of secondary metabolites such as hydrolysable tannins which are relatively abundant in fruits, vegetables and beverages in the human diet. We have studied the in vivo long-term effect consumption of tannic acid-supplemented drinking water (0.05%, w/v) on the rat adipocyte adenyl cyclase system and on lipolysis. We found that 14-day tannic acid supplementation did not significantly affect either body growth or food consumption, while fat pads weight was higher than that of the control, although the difference was not significant. On the other hand, tannic acid supplementation decreased both basal and isoproterenol-stimulated lipolysis significantly whereas cyclic AMP production as well as adenyl cyclase activity increased significantly. These results are at a first glance contradictory as cyclic AMP accumulation and lipolysis are positively correlated in rat adipocytes. They suggest at least that the tannic acid diet led to an inhibition of cyclic AMP-dependent protein kinase activity followed by a decrease in lipolysis in rat adipocytes, and to an increased activity of the type VI adenyl cyclase subunit of rat fat cells. This subunit is known to be negatively regulated under phosphorylation by cyclic AMP-dependent protein kinase. More in-depth studies are required to examine whether tannic acid could at least modify the expression of the catalytic subunit of adenyl cyclase, G-proteins and cyclic AMP-dependent protein kinase and/or alter their activities.  相似文献   

17.
The cytotoxic effect of adenylate cyclase (AC) toxin from Bordetella pertussis on host cells has been attributed to the production of supraphysiologic levels of cyclic AMP by the toxin. We have tested this hypothesis and show that at least two different mechanisms, cAMP accumulation/ATP depletion and oligomerization/pore formation, contribute, perhaps synergistically, to AC toxin-induced cytotoxicity. Wild-type (WT) AC toxin causes cell death associated with an increase in cAMP, a reduction in ATP, activation of caspases 3/7, and increased annexin V and TUNEL staining. In contrast, a non-acylated, enzymatically active, non-haemolytic form of AC toxin is able to increase cAMP, reduce ATP and elicit annexin V staining, but the decrease in ATP and the annexin staining are transient and there is minimal caspase activation, TUNEL staining and cell death. Mutant AC toxins defective in either enzymatic activity or the ability to deliver their enzymatic domain are able to kill J774 cells, without cAMP production, and with minimal caspase activation and TUNEL staining. Comparison of the potencies of WT toxin and those of mutants that only increase cAMP or only create transmembrane pores establishes that at least two mechanisms are contributory and that simply the production of cAMP is not enough to account for the cytotoxicity produced by AC toxin.  相似文献   

18.
The structural similarities of the heavy chains (HC) of myosin isolated from atria and ventricles of hyper-, hypo-, and euthyroid rabbits were compared by immunological analysis, by one- and two-dimensional peptide mapping, and by electrophoresis under nondenaturing conditions. Monoclonal and polyclonal antibodies, which are specific for HC alpha of ventricular myosin, cross-reacted equally with the HCs of euthyroid atrial myosin. Our immunological analysis identified multiple epitopes common to euthyroid atrial HC and ventricular HC alpha. One- and two-dimensional gel electrophoretic analysis of peptides produced by partial proteolytic digestion of each type of HC reveal no differences between euthyroid atrial HCs and ventricular HC alpha, whereas marked differences are apparent between atrial HC and ventricular HC beta. Nondenaturing gel electrophoresis separates ventricular myosin from hyper- and hypothyroid rabbits into two forms, V1 and V3, respectively. In euthyroid atria, two isomyosins, A1 and A2, were resolved; with the slower moving A2 isomyosin having the same mobility as that of the V1 isomyosin. After cross-hybridization of light chains of ventricular myosin with euthyroid atrial HCs, only a single band having a mobility identical with that of the V1 isomyosin was seen. Furthermore, atrial myosin HCs isolated from hyper- and hypothyroid rabbits were indistinguishable from euthyroid atrial HC and from ventricular HC alpha by these procedures. We conclude that ventricular HC alpha and atrial HC are indistinguishable proteins, and that the type of HC expressed in the atria is unaffected by the thyroid state of the rabbit.  相似文献   

19.
The accumulation of cyclic AMP due to adenosine deaminase plus theophylline and either isoproterenol or ACTH in the presence of adenosine deaminase plus theophylline, was inhibited by clonidine, N6-(phenylisopropyl)-adenosine and prostaglandin E2. The inhibition was nearly identical in medium containing sodium ions or in medium in which sodium and its accompanying anion were substituted by an isosmotic amount of sucrose. Consistent with this, lipolysis induced by adenosine deaminase and theophylline was significantly inhibited by clonidine, N6-(phenylisopropyl)-adenosine and prostaglandin E2 regardless of the presence or absence of Na+ in the medium. The results do not support the suggestion that extracellular Na+ is required for the regulation of cyclic AMP levels by hormones and neurotransmitters that inhibit adenylate cyclase.  相似文献   

20.
Conflicting opinions were recently expressed concerning the possible effect of 2-adrenergic agonists upon cyclic AMP production in pancreatic islets. In the present: study, clonidine inhibited glucose-induced insulin release from rat pancreatic islets, this inhibitory effect being abolished by idazoxan. Clonidine did not suppress the capacity of forskolin to augment glucose-induced insulin release. In a particulate subcellular fraction derived from the islets, adenylate cyclase was activated by calmodulin (in the presence of Ca2+), NaF, GTP,, L-arginine, and forskolin, and slightly inhibited by clonidine. The inhibitory action of clonidine upon basal adenylate cyclase activity was more pronounced in islet crude homogenates. The inhibitory effect of clonidine was antagonized by forskolin whether in the particulate fraction or crude homogenate. At variance with the modest effects of glucagon, D-glucose, L-arginine, or a tumor-promoting phorbol ester upon cyclic AMP production by intact islets, forskolin caused a six-fold increase in cyclic AMP production. Clonidine inhibited cyclic AMP production by intact islets, whether in the absence or presence of forskolin. It is proposed that the inhibitory action of clonidine upon insulin release is attributable , in part at least, to inhibition of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号