首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of stressor-specific induction programs of heat shock proteins (hsps) leads us to analyze the possible occurrence of a stressor-specific tolerance induced by either heat shock, arsenite, or cadmium. As a measure of this tolerance re-induction of hsps was studied. In this paper, we tested whether the refractory state is either valid for each specific hsp (implying independent regulation of every member of the heat shock protein family) or extends from small subsets of the hsp-family to even larger groups of proteins (indicating a more common denominator in their regulation). (Re-)induction of hsps does not seem to be regulated at the level of each individual hsp since differences in induced synthesis of hsps between two stressor conditions are not supplemented systematically upon the sequential application of the two stressors. The most notable example in this respect is hsp60. A pretreatment with cadmium, which hardly induces synthesis of this hsp, does induce a tolerance to (re)-induction by heat shock, which normally induces hsp60. This suggests the existence of a more common denominator regulating the coordinate expression of at least some hsps. From our data we conclude that the degree, but not the pattern, of hsp re-induction is influenced by the type of stressor used in the pretreatment. The pattern of hsps induced by a secondary applied stressor still shows most of its stressor-specificity and seems to be independent of any pretreatment. The possible implications of stressor-specificity are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
We have investigated the biochemical properties of Xenopus laevis p53. With an in vitro binding assay, we can detect a specific association between X. laevis p53 and simian virus 40 large T antigen. Furthermore, X. laevis p53 expressed in monkey COS cells is stably associated with this viral antigen. Like mammalian p53, X. laevis p53 in complex with simian virus 40 large T antigen exhibits a 20-fold increase of its half-life. On the other hand, X. laevis p53 is unable to associate either in vivo or in vitro with adenovirus type 5 E1B 55-kilodalton protein. We show by an immunological technique that X. laevis p53 forms specific complexes with mammalian hsp72 and hsp73 heat shock proteins only at a temperature well above the optimal growth temperature for X. laevis. Our results suggest that the protein-binding properties of p53 are closely related to the functional activity of the protein.  相似文献   

4.
At the heat shock temperature of 45 degrees C, there is a transient induction of the synthesis of heat shock proteins and repression of normal protein synthesis in cells of Neurospora crassa. Both conidiospores and mycelial cells resume normal protein synthesis after 60 min at high temperature. At the RNA level, however, these two developmental stages responded with different kinetics to elevated temperature. Heat shock RNAs (for hsp30 and hsp83) accumulated and declined more rapidly in spores than in mycelia, and during recovery spores accumulated mRNA that encoded a normal protein (the proteolipid subunit of the mitochondrial ATPase), whereas mycelia showed no increase in this normal RNA (for at least 120 min). Therefore, the resumption of normal protein synthesis in spores may depend upon accumulation of new mRNAs. In contrast, mycelial cells appeared to change their translational preference during continued incubation at elevated temperature, from a discrimination against normal mRNAs to a resumption of their translation into normal cellular proteins, exemplified by the ATPase proteolipid subunit whose synthesis was measured in the heat-shocked cells.  相似文献   

5.
In this study, we have employed whole-mount, in situ hybridization to study the spatial pattern of hsc70 and hsp70 mRNA accumulation in normal and heat shocked embryos during Xenopus laevis development. Our findings revealed that hsc70 mRNA was constitutively present in a global fashion throughout the embryo and was not heat inducible. Accumulation of hsp70 mRNA, however, was detected only in heat shocked embryos. Furthermore, hsp70 mRNA accumulation was enriched in a tissue-specific manner in X. laevis tailbud embryos within 15 minutes of a 33 degrees C heat shock. Abundant levels of heat shock-induced hsp70 mRNA were detected in the head region, including the lens placode, the cement gland, and in the somitic region and proctodeum. Preferential heat-induced accumulation of hsp70 mRNA was first detected at a heat shock temperature of 30 degrees C. Placement of embryos at 22 degrees C after a 1-hour, 33 degrees C heat shock resulted in decreased hsp70 mRNA with time, but the message persisted in selected tissues, including the lens placode and somites. Treatment of tailbud embryos with either sodium arsenite or zinc chloride induced a tissue-specific enrichment of hsp70 mRNA in the lens placode and somitic region. These studies reveal the complex nature of the heat shock response in different embryonic tissues and suggest the presence of regulatory mechanisms that lead to a stressor-induced, tissue-specific enrichment of hsp70 mRNA.  相似文献   

6.
7.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

8.
In previous studies, the only small HSPs that have been studied in Xenopus laevis are members of the HSP30 family. We now report the analysis of Xenopus HSP27, a homolog of the human small HSP, HSP27. To date the presence of both hsp30 and hsp27 genes has been demonstrated only in minnow and chicken. Xenopus HSP27 cDNA encodes a 213 aa protein that contains an alpha-crystallin domain as well as a polar C-terminal extension. Xenopus HSP27 shares 71% identity with chicken HSP24 but only 19% identity with Xenopus HSP30C. Northern blot analysis revealed that Xenopus HSP27 gene expression was developmentally regulated. Constitutive and heat shock-induced hsp27 mRNA accumulation was first detectable at the early tailbud stage while HSP27 protein was detected at the tadpole stage. Furthermore, hsp27 mRNA was enriched in selected tissues under both control and heat shock conditions. Whole mount in situ hybridization analysis detected the presence of this message in the lens vesicle, heart, head, somites, and tail region. Purified recombinant HSP27 protein displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of target proteins including citrate synthase, malate dehydrogenase and luciferase. Thus, Xenopus HSP27, like HSP30, is a developmentally-regulated heat-inducible molecular chaperone.  相似文献   

9.
Flavonoids inhibit the expression of heat shock proteins   总被引:14,自引:0,他引:14  
Cells exposed to several forms of stress, such as heat shock, transiently synthesize a group of proteins called heat shock proteins (hsps). Although many stressors other than heat shock are known to induce hsps, inhibitors of hsp expression have never been reported. Here we show that quercetin and several other flavonoids inhibit the synthesis of hsps induced by heat shock in two human cell lines, Hela cells and COLO320 DM cells. Quercetin inhibited the induction of hsp70 at the level of mRNA accumulation. This is the first report to describe the inhibition of hsp expression by reagents.  相似文献   

10.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

11.
Effects of low culture temperature on the induction of heat shock proteins in FM3A cells by a heat shock and on the thermal sensitivity of the cells were examined. FM3A cells maintained at 33 degrees C could not induce hsp70 during continuous heating or after a short heat shock at either 39, 42, or 45 degrees C, although FM3A cells maintained at a normal culture temperature of 37 degrees C can induce the synthesis of hsp70. Furthermore, the cells maintained at 33 degrees C were more sensitive to the subsequent heat shock than the cells maintained at 37 degrees C. Thus, the culture temperature of the mammalian cells may be an important factor for the induction of hsp70, and hsp70 may play an important role to protect or repair the thermal damage of cells.  相似文献   

12.
Summary The response to stresses produced by changes in the fermentation conditions ofClostridium acetobutylicum in continuous culture was determined under acid- and solvent-producing conditions. Using a phosphate-limited chemostat it was found that specificheatshockproteins (hsp 73, hsp 72 [Dnak], hsp 67 [GroEL], hsp 17 and hsp 14) were synthesized at elevated levels during the shift from acid to solvent formation. The induction of these stress proteins was observed before acetone and butanol were detected in the medium and was therefore not a response to these solvents present in the medium. Simultaneously with the induction of hsps, changes in the synthesis rates of other cellular proteins were observed. Synthesis of proteins associated with the acid production phase decreased and of proteins correlated with the solvent production phase increased. Some hsps, including the DnaK- and GroEL-similar proteins, hsp 73 and hsp 21, were also induced by a change in the growth rate and/or the pH. The analysis of the general regulation of the heat shock response inC. acetobutylicum revealed that the induction of at least 15 hsps after a temperature up-shift was transient and that two temporal classes of hsps could be distinguished. The synthesis of one group of hsps reached a maximum after 6 min and another around 11 min after the temperature upshift and returned to steady-state levels 30 to 40 min after the shock.  相似文献   

13.
We employed whole-mount in situ hybridization and immunohistochemistry to study the spatial pattern of hsp30 gene expression in normal and heatshocked embryos during Xenopus laevis development. Our findings revealed that hsp30 mRNA accumulation was present constitutively only in the cement gland of early and midtailbud embryos, while hsp30 protein was detected until at least the early tadpole stage. Heat shock-induced accumulation of hsp30 mRNA and protein was first observed in early and midtailbud embryos with preferential enrichment in the cement gland, somitic region, lens placode, and proctodeum. In contrast, cytoskeletal actin mRNA displayed a more generalized pattern of accumulation which did not change following heat shock. In heat shocked midtailbud embryos the enrichment of hsp30 mRNA in lens placode and somitic region was first detectable after 15 min of a 33 degrees C heatshock. The lowest temperature capable of inducing this pattern was 30 degrees C. Placement of embryos at 22 degrees C following a 1-h 33 degrees C heat shock resulted in decreased hsp30 mRNA in all regions with time, although enhanced hsp30 mRNA accumulation still persisted in the cement gland after 11 h compared to control. In late tailbud embryos the basic midtailbud pattern of hsp30 mRNA accumulation was enhanced with additional localization to the spinal cord as well as enrichment across the embryo surface. These studies demonstrate that hsp30 gene expression can be detected constitutively in the cement gland of tailbud embryos and that heat shock results in a preferential accumulation of hsp30 mRNA and protein in certain tissues.  相似文献   

14.
15.
We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.  相似文献   

16.
Summary The synthesis of heat shock proteins (hsp) has been examined during the early embryogenesis of Drosophila melanogaster. Normal protein synthesis stops after heat shock at all developmental stages, while hsp synthesis is induced only after treatment at blastoderm and later stages. The small hsps continue to be synthesised after heat shock for a longer period than the larger ones. Heat shocks at 35°C, 37°C and 40°C were compared for their effect on hsp synthesis and the effect of heat shock on the normal course of development was analysed.  相似文献   

17.
18.
Eukaryotic small heat shock proteins (shps) act as molecular chaperones by binding to denaturing proteins, preventing their heat-induced aggregation and maintaining their solubility until they can be refolded back to their normal state by other chaperones. In this study we report on the functional characterization of a developmentally regulated shsp, hsp30, from the American bullfrog, Rana catesbeiana. An expression vector containing the open reading frame of the hsp30 gene was expressed in Escherichia coli. Purified recombinant hsp30 was recovered as multimeric complexes and was composed of a mixture of alpha-helical and beta-sheet-like structures as determined by circular dichroism analysis. Hsp30 displayed chaperone activity since it inhibited heat-induced aggregation of citrate synthase. Furthermore hsp30 maintained heat-treated luciferase in a folding competent state. For example, heat denatured luciferase when microinjected into Xenopus oocytes did not regain enzyme activity whereas luciferase heat denatured with hsp30 regained 100% enzyme activity. Finally, hsp30 protected the DNA restriction endonuclease, PstI, from heat inactivation. PstI incubated alone at 42 degrees C lost its enzymatic function after 1 h whereas PstI supplemented with hsp30 accurately digested plasmid DNA after 4 h at the elevated temperature. These results clearly indicate a molecular chaperone role for R. catesbeiana hsp30.  相似文献   

19.
Lipoperoxidative damage caused by exposure of isolated hepatocytes or cultivated hepatoma cells to ADP-iron or to 4-hydroxynonenal induces the synthesis of some proteins which are different under these two conditions but are always a subset of the proteins induced in each type of cells upon heat-shock (heat-shock proteins). For at least one of these proteins (hsp 31), induced by 4-hydroxynonenal, the increase is dose-dependent and the effect of heat and the chemical seems to be additive. Lipoperoxidation may be implicated in the induction of some of the heat shock proteins, but reproduces only incompletely the response of protein synthesis typical of heat-shock conditions.  相似文献   

20.
Ectothermic vertebrates become thermally tolerant (heat hardened) after exposure to heat shock. Eukaryotic cells show a similar response. Cellular thermal tolerance is correlated with the induction of heat shock proteins (hsps). We have investigated the relationship between heat hardening in salamanders and the induction of hsps in the tissues of these organisms. Although the synthesis of hsps can be induced in these animals by sublethal heat shocks, conditions required for hsp induction and heat hardening often do not coincide. We conclude that induced thermal tolerance in adult salamanders is independent of hsp induction in their tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号