首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

4.
5.
6.
7.
8.
9.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

10.
11.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

12.
13.
We examined the role of p38 mitogen-activated protein (MAP) kinase in the tumor necrosis factor alpha (TNF-alpha)- or interleukin-1beta (IL-1beta)-induced production of interleukin-6 (IL-6) and interleukin-8 (IL-8) in fresh rheumatoid synovial fibroblast (RSF) cultures concomitantly with the induction of p38 MAP kinase activity. Pretreatment of RSF with a specific p38 MAP kinase inhibitor, SB203580, blocked the induction of IL-6 and IL-8 without affecting nuclear translocation of nuclear factor kappaB (NF-kappaB) or IL-6 and IL-8 mRNA levels. These findings suggest that p38 MAP kinase inhibitor may have synergistic, rather than additive, effect for the treatment of rheumatoid arthritis.  相似文献   

14.
15.
16.
17.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing a novel antibody array screening method. In HeLa cells, Stat1 was associated with TNFR1 and this association was increased with TNF-alpha treatment. TNFR1 signaling factors TRADD and Fas-associated death domain protein (FADD) were also found to interact with Stat1 in a TNF-alpha-dependent process. Our in vitro recombinant protein-protein interaction studies demonstrated that Stat1 could directly interact with TNFR1 and TRADD but not with FADD. Interaction between Stat1 and receptor-interacting protein (RIP) or TNFR-associated factor 2 (TRAF2) was not detected. Examination of Stat1-deficient cells showed an apparent increase in TNF-alpha-induced TRADD-RIP and TRADD-TRAF2 complex formation, while interaction between TRADD and FADD was unaffected. As a consequence, TNF-alpha-mediated I-kappaB degradation and NF-kappaB activation were markedly enhanced in Stat1-deficient cells, whereas overexpression of Stat1 in 293T cells blocked NF-kappaB activation by TNF-alpha. Thus, Stat1 acts as a TNFR1-signaling molecule to suppress NF-kappaB activation.  相似文献   

18.
19.
20.
Ricin induced apoptotic nuclear morphological changes in mouse macrophage cell line RAW264.7 cells at concentrations sufficient to cause severe protein synthesis inhibition. Ricin also induced the release of tumor necrosis factor-alpha (TNF-alpha) from this cell line in a dose-dependent manner but the profile was bell-shaped. However, the isolated galactose-specific ricin B-chain had no such effects. These results suggest that the receptor-binding of ricin through the B-chain is not enough, and subsequent attack on the intracellular target, i.e., the 28S ribosomal RNA (rRNA), by the A-chain of internalized ricin is required for the effects of ricin. Z-D-CH2-DCB, a caspase family inhibitor, showed potent inhibition of the release of TNF-alpha from RAW264.7 cells as well as blockage of the induction of apoptosis by ricin. Furthermore, SB202190, a specific P38 mitogen-activated protein (MAP) kinase inhibitor that strongly inhibits the release of TNF-alpha, also showed significant inhibition of ricin-induced apoptosis. These results suggest that there may be cross-talk between the pathways leading to the release of TNF-alpha and apoptosis. Time course analysis revealed that the activation of p38 MAP kinase started prior to the induction of TNF-alpha release and apoptosis. Since the activation of p38 MAP kinase in ricin-treated RAW264.7 cells was not prevented by Z-D-CH2-DCB, the activation of p38 MAP kinase may occur upstream of the caspase cascade. Among the other protein synthesis inhibitors examined, modeccin and anisomycin, which can trigger a ribotoxic stress response similar to ricin, induced the release of TNF-alpha, but emetine and cycloheximide did not. These results suggest that the specific attack on the 28S ribosomal RNA and the resulting ribotoxic stress response may trigger the multiple signal transduction pathways through the activation of p38 MAP kinase, which in turn leads to TNF-alpha release and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号