首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small amounts of a higher inositol phosphate with chromatographic properties of [3H]inositol (1,3,4,5,6)pentakisphosphate were formed from [3H]inositol (1,4,5)trisphosphate added to homogenates of ovarian follicles of Xenopus laevis, and from [3H]inositol (1,3,4,5)tetrakisphosphate after injection into follicular oocytes. Other intermediate forms of inositol tetrakisphosphate were not detectable. [3H]inositol (1,3,4,5,6)pentakisphosphate prepared from chicken erythrocytes was metabolized in homogenates to an inositol tetrakisphosphate eluting later than the (1,3,4,5) isomer. Activation of receptors in ovarian follicles of Xenopus laevis with acetylcholine or stimulation with injected GTP gamma S caused formation not only of inositol trisphosphate and its expected metabolites but also of small amounts of inositol pentakisphosphate. These results suggest that the latter may be formed from metabolites of inositol (1,4,5)trisphosphate in this tissue during receptor activation.  相似文献   

2.
The effects of bombesin and insulin, separately and in combination, have been studied in Swiss mouse 3T3 cells. Bombesin caused a rapid transfer of 3H from the lipid inositol pool of prelabeled cells into inositol phosphates. Label in inositol tetrakisphosphate (InsP4) and in Ins1,4,5P3 and Ins1,3,4P3 rose within 10 sec of stimulation and that in Ins1,4P2, another InsP2 and InsP1, more slowly. Insulin, which had little effect on its own, increased the turnover of inositol lipids due to acute bombesin stimulation and also enhanced the DNA synthesis evoked by prolonged bombesin treatment. The results suggest that bombesin acting as a growth factor, uses inositol lipids as part of its transduction mechanism and that insulin acts synergistically to enhance both inositol phosphate formation and DNA synthesis.  相似文献   

3.
Norepinephrine stimulated the rapid hydrolysis of [3H]phosphatidylinositol-4,5-bisphosphate in rat aorta with a maximal decrease of 30% within 60 sec of stimulation. Levels of [3H]phosphatidylinositol-4,5-bisphosphate returned to control by 5 min despite the continued presence of agonist. Hydrolysis of [3H]phosphatidylinositol-4,5-bisphosphate occurred concurrently with the formation of inositol phosphates. Inositol-tris and tetrakisphosphate levels were increased within 30 sec of agonist stimulation. Increases in inositol phosphate levels due to agonist were dose-dependent with half-maximal activation at 1 microM norepinephrine.  相似文献   

4.
A kinetic analysis was undertaken of the inhibition by 5 mM MgATP of Ins(1,4,5)P3 5-phosphatase in 100,000 g particulate fractions prepared from liver homogenates. The Km for Ins(1,4,5)P3 was increased by 44% (from 16 to 23 microM). The competitive nature of the inhibition was confirmed with a Dixon plot. The effect of MgATP on 5-phosphatase was also studied at physiological concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 (i.e. 1.5 microM); the rate of substrate hydrolysis was inhibited by over 30%. Ins(1,3,4,5)P4 was also hydrolysed by a 3-phosphatase, but this enzyme was unaffected by 5 mM MgATP. Thus, ATP, by differentially affecting Ins(1,3,4,5)P4 3- and 5-phosphatase, may increase the flux through the futile cycle that interconverts Ins(1,4,5)P3 and Ins(1,3,4,5)P4.  相似文献   

5.
Organismal stress responses to oxidative stress are relevant to ageing and disease and involve key cell-/tissue-specific signal transduction mechanisms. Using Drosophila, an established in vivo model for stress studies, we show that cell-specific inositol phosphate signalling specifically via inositol 1,4,5 trisphosphate 3-kinase (InsP3 3-K, IP3K), negatively regulates organismal responses to oxidative stress. We demonstrate that the Drosophila Malpighian tubule (equivalent to vertebrate kidney and liver) is a key epithelial sensor for organismal oxidative stress responses: precise targeting of either gain-of-function constructs of Drosophila IP3Ks (IP3K-1 and IP3K-2), or loss-of-function (RNAi) constructs to only one cell type in tubule reversibly modulates survival of stress-challenged adult flies. In vivo, targeted IP3K-1 directly increases H2O2 production, pro-apoptotic caspase-9 activity and mitochondrial membrane potential. The mitochondrial calcium load in tubule principal cells–assessed by luminescent and fluorescent genetically-encoded mitochondrial calcium reporters–is significantly increased by IP3K-1 under oxidative stress conditions, leading to apoptosis.The Drosophila orthologues of human apoptotic bcl-2 genes include debcl and buffy. Oxidative stress challenge does not modulate gene expression of either debcl or buffy in tubules; and altered debcl expression does not influence survival rates under oxidative stress challenge. Finally, targeted over-expression of either debcl or buffy to tubule principal cells does not impact on tubule caspase-9 activity. Thus, IP3K-1 modulates epithelial cell apoptosis without involvement of bcl-2-type proteins.  相似文献   

6.
The calcium-liberating second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) by Ins(1,4,5)P3 3-kinases (IP3Ks) that add a fourth phosphate group to the 3-position of the inositol ring. Two isoforms of IP3Ks (named A and B) from different vertebrate species have been well studied. Recently the cloning and examination of a human full-length cDNA encoding a novel isoform, termed human IP3K-C (HsIP3K-C), has been reported. In the present study we report the cloning of a full-length cDNA encoding a rat homologue of HsIP3K-C with a unique mRNA expression pattern, which differs remarkably from the tissue distribution of HsIP3K-C. Of the rat tissues examined, rat IP3K-C (RnIP3K-C) is mainly present in heart, brain, and testis and shows the strongest expression in an epidermal tissue, namely tongue epithelium. RnIP3K-C has a calculated molecular mass of approximately 74.5 kDa and shows an overall identity of approximately 75% with HsIP3K-C. A bacterially expressed, enzymatically active and Ca2+-calmodulin-regulated fragment of this isoform displays remarkable enzymatic properties like a very low Km for Ins(1,4,5)P3 ( approximately 0.2 microm), substrate inhibition by high concentrations of Ins(1,4,5)P3, allosteric product activation by Ins(1,3,4,5)P4 in absence of Ca2+-calmodulin (Ka(app) 0.52 microm), and the ability to efficiently phosphorylate a second InsP3 substrate, inositol 2,4,5-trisphosphate, to inositol 2,4,5,6-tetrakisphosphate in the presence of Ins(1,3,4,5)P4. Furthermore, the RnIP3K-C fused with a fluorescent protein tag is actively transported into and out of the nucleus when transiently expressed in mammalian cells. A leucine-rich nuclear export signal and an uncharacterized nuclear import activity are localized in the N-terminal domain of the protein and determine its nucleocytoplasmic shuttling. These findings point to a particular role of RnIP3K-C in nuclear inositol trisphosphate phosphorylation and cellular growth.  相似文献   

7.
8.
There are no reports of the effect of stretch on inositol phosphates in smooth muscle. Phosphoinositide and inositol phosphate metabolism was studied in cultured rat vascular smooth muscle cells subjected to stretching. The masses of inositol trisphosphate and tetrakisphosphate increased (+34 +/- 7% and +58 +/- 12%, respectively; p less than 0.001) after 25 s of a single 20% stretch and had returned to control levels by 45 s; phosphatidylinositol, phosphatidylinositol phosphate and bisphosphate did not change. Repetitive stretch did not alter the masses of any of the compounds. A single stretch also increased 45Ca2+ efflux (+52 +/- 5%, p less than 0.01). These data suggest that stretch of cultured vascular smooth muscle can elicit a rapid, short-lived increase in inositol phosphates, which may subsequently affect Ca2+.  相似文献   

9.
A segment of inositol 1,4,5-trisphosphate 3-kinase responsible for inositol 1,4,5-trisphosphate (InsP(3)) binding was characterized and confirmed by three different approaches employing the fully active expressed catalytic domain of the enzyme. Part of this moiety was protected from limited tryptic proteolysis by InsP(3). Sequencing of two fragments of 16 and 21 kDa, generated in the absence or presence of InsP(3), respectively, identified segment Glu-271 to Arg-305 as being protected. 15 monoclonal antibodies, all binding to epitopes within this region, inhibited enzyme activity and interfered with inositol phosphate binding. Detailed enzyme kinetic parameters of 32 site-directed mutants revealed residues Arg-276 and Lys-303 in this segment and Arg-322, located nearby, as directly involved in and five other closely neighbored residues, all located within a segment of 73 amino acids, as also influencing InsP(3) binding. Part of this region is similar in sequence to an InsP(3) binding segment in InsP(3) receptors. Combined with the finding that mutants influencing only ATP binding all lie outside this region, these data indicate that an InsP(3) binding core domain is inserted between two segments acting together in ATP binding and phosphate transfer.  相似文献   

10.
11.
Mitochondrial cytochrome c release and inositol (1,4,5) trisphosphate receptor (InsP(3)R)-mediated calcium release from the endoplasmic reticulum mediate apoptosis in response to specific stimuli. Here we show that cytochrome c binds to the InsP(3)R during apoptosis. Addition of 1 nM cytochrome c blocks calcium-dependent inhibition of InsP(3)R function. Early in apoptosis, cytochrome c translocates to the endoplasmic reticulum where it selectively binds InsP(3)R, resulting in sustained, oscillatory cytosolic calcium increases. These calcium events are linked to the coordinate release of cytochrome c from all mitochondria. Our findings identify a feed-forward mechanism whereby early cytochrome c release increases InsP(3)R function, resulting in augmented cytochrome c release that amplifies the apoptotic signal.  相似文献   

12.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that elevate cytoplasmic Ca2+ in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP3R, the first intracellular Ca2+ channel to be defined in flatworms. A single IP3R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP3R) that shared well conserved structural features with vertebrate IP3R counterparts. Expression of an NH2-terminal Dj.IP3R region (amino acid residues 223–585) recovered high affinity 3H-IP3 binding (0.9 ± 0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP3 coordination. In situ hybridization revealed that Dj.IP3R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP3R resulted in a decreased egg-laying behavior suggesting Dj.IP3R plays an upstream role in planarian reproductive physiology.  相似文献   

14.
Conclusion In this review, we have described the functional properties and regulation of the InsP3R. Not all aspects of InsP3R function and regulation were covered, the main focus was on the most recent and physiologically important data. Information about the structure, heterogeneity, functional properties, and regulation of the InsP3R is useful for understanding the spatiotemporal aspects of Ca signaling. The combination of biochemical, biophysical and molecular biological techniques has revealed the intricacies of the InsP3R over the past decade. However, questions about the functional differences between various isoforms and splice variants of the InsP3R, the structural determinants responsible for regulation of InsP3R by Ca and ATP, the functional effects of InsP3R phosphorylation and many others remain to be elucidated. Future investigations can be expected to provide answers to these important questions.We thank S. Bezprozvannaya for expert technical assistance. This work was supported by National Institutes of Health grants HL 33026 and GM 39029, and a Grant-in-Aid from the Patrick and Catherine Weldon Donaghue Medical Research Foundation.  相似文献   

15.
D-Myoinositol 1,4,5-trisphophate 3-kinases (IP(3)-3Ks) play important roles in metazoan cellular signaling. It has been demonstrated that mice without a functional version of IP(3)-3K isoform B are deficient in peripheral T-cells, indicating that IP(3)-3KB is essential to the developing immune system. The recent apo IP(3)-3KA structure exhibited a helix at the catalytic domain N-terminus exhibited a helix at the N-terminus of the catalytic domain, with a tryptophan indole moiety mimicking the binding mode of the substrate ATP purine ring, suggesting a mechanism of autoinhibition. Here we present the structure of the complete catalytic domain of IP(3)-3KB, including the CaM binding domain in complex with Mg(2+) and ATP. The crystal structure reveals a homodimeric arrangement of IP(3)-3KB catalytic domains, mediated via an intermolecular antiparallel beta-sheet formed from part of the CaM binding region. Residues from the putative autoinhibitory helix are rearranged into a loop configuration, with extensive interactions with the bound ATP. Mutagenesis of residues from this region reveals that substitution of the putative autoinhibitory tryptophan generates a hyperactive enzyme which retains Ca(2+)/CaM sensitivity. The IP(3)-3KB structure suggests a mechanism of enzyme activation, and raises the possibility that an interaction between IP(3)-3KB molecules may occur as part of the catalytic or regulatory cycle.  相似文献   

16.
17.
T L Smith 《Life sciences》1987,41(26):2863-2868
[3H]In(1,4,5)P3 specific binding was determined in membrane fragments from various brain regions of adult male C57/BL mice. [3H]In(1,4,5)P3 specific binding was at least 10 times higher in cerebellum than in either striatum, cerebral cortex, hippocampus, or midbrain. Ethanol added in vitro up to 500 mM to cerebellar membrane fragments of control mice had no significant effect on [3H]In(1,4,5)P3 specific binding. In contrast, the maximal number of binding sites (Bmax) for [3H]In(1,4,5)P3 was significantly decreased in cerebella from mice which had been rendered tolerant-dependent to ethanol. KD values for these mice were unchanged when compared to control values.  相似文献   

18.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

19.
20.
The therapeutic properties of lithium ions (Li+) are well known; however, the mechanism of their action remains unclear. To investigate this problem, we have isolated Li+-resistant mutants from Dictyostelium. Here, we describe the analysis of one of these mutants. This mutant lacks the Dictyostelium prolyl oligopeptidase gene (dpoA). We have examined the relationship between dpoA and the two major biological targets of lithium: glycogen synthase kinase 3 (GSK-3) and signal transduction via inositol (1,4,5) trisphosphate (IP3). We find no evidence for an interaction with GSK-3, but instead find that loss of dpoA causes an increased concentration of IP3. The same increase in IP3 is induced in wild-type cells by a prolyl oligopeptidase (POase) inhibitor. IP3 concentrations increase via an unconventional mechanism that involves enhanced dephosphorylation of inositol (1,3,4,5,6) pentakisphosphate. Loss of DpoA activity therefore counteracts the reduction in IP3 concentration caused by Li+ treatment. Abnormal POase activity is associated with both unipolar and bipolar depression; however, the function of POase in these conditions is unclear. Our results offer a novel mechanism that links POase activity to IP3 signalling and provides further clues for the action of Li+ in the treatment of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号