首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
李云凯   《生态学杂志》2014,25(9):2756-2764
随着稳定同位素分析技术的不断成熟,其在生态学领域中的应用也增长迅速,并成为动物摄食生态学的重要研究工具.鲨鱼因其在生物系统进化过程中的独特地位和海洋生态系统中的重要作用已成为海洋食物网研究的重点,然而国内针对鲨鱼摄食习性和洄游行为等方面的研究仍处于起步阶段.本文在总结了国内外鲨鱼稳定同位素分析组织样品选取和样品预处理方法的基础上,系统归纳了稳定同位素技术在鲨鱼摄食生态学,尤其在其摄食和洄游行为研究领域中的应用,着重分析稳定同位素技术在鲨鱼稳定同位素判别值和更新速率、食性分析、营养级评估、洄游路径分析和生态位分布等核心问题上的应用现状和发展前景,以期为国内学者开展鲨鱼类基础生物、生态学研究提供有益参考.  相似文献   

2.
稳定性同位素技术在生态学上的应用   总被引:11,自引:2,他引:9  
稳定性同位素技术早在20世纪70年代末期就被引入到生态学领域。最初是利用植物稳定性碳同位素的差异。开展了许多有关营养流动方面的研究;到90年代,稳定性碳和氮同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于技术的进步,稳定性同位素(特别是氢同位素)被用来开展动物迁徙习性方面的研究。到目前为止,国内有关这方面的研究还鲜有报道,而且对自然界存在的稳定性同位素的理解还存在一定偏差。本文主要介绍了稳定性同位素效应及其分馏原理、稳定性同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究动物迁徙生态学中的作用等方面的内容。  相似文献   

3.
稳定同位素技术在头足类摄食生态学研究中的应用   总被引:2,自引:0,他引:2  
头足类在海洋食物网营养关系中占有重要地位,然而对其复杂的生活史过程,尤其是摄食生态学信息仍知之甚少.稳定同位素技术作为传统食物网科学研究方法的有力补充,可更深层次地分析头足类的摄食习性和栖息地等方面的重要信息.本文在比较分析国内外头足类摄食生态学研究方法的基础上,系统归纳总结了稳定同位素技术在头足类摄食生态学研究中的发展现状并介绍最新进展情况,着重分析稳定同位素技术在头足类生活史信息,尤其是在摄食生态学研究中的应用现状及发展前景,包括测定样品标准化、头足类生长发育过程中的食性转换和洄游分布等核心问题,以促进其在头足类生物学研究中的应用.  相似文献   

4.
基于稳定同位素的SPAC水碳拆分及耦合研究进展   总被引:1,自引:0,他引:1  
土壤-植被-大气连续体(SPAC)是陆地水文学、生态学和全球变化领域的重要研究对象,其水碳循环过程及耦合机制是前沿性问题.稳定同位素技术示踪、整合和指示的特征有助于评估分析生态系统固碳和耗水情况.本文在简述稳定同位素应用原理和技术的基础上,重点阐释了基于稳定同位素光学技术的SPAC系统水碳交换研究进展,包括:在净碳通量中拆分光合与呼吸量,在蒸散通量中拆分蒸腾与蒸发量,以及在系统尺度上的水碳耦合研究.新兴的技术和方法实现了生态系统尺度上长期高频的同位素观测,但在测量精准度、生态系统呼吸拆分、非稳态模型适应性、尺度转换和水碳耦合机制等方面存在挑战.本文探讨了现有主要研究成果、局限性以及未来研究展望,以期对稳定同位素生态学领域的新研究和技术发展有所帮助.  相似文献   

5.
基于稳定同位素的湿地食物源判定和食物网构建研究进展   总被引:1,自引:0,他引:1  
湿地生物营养动力学是湿地生态系统结构和功能评价研究的基础.碳、氮稳定同位素作为识别营养关系的方法,已在湿地生态系统食物来源、组成和食物链传递研究中得到广泛运用.本文系统综述了稳定同位素食物贡献度计算模型和营养级确定的基本方法和理论;讨论了动物营养分馏值和基线的选择依据;概括了湿地生态系统典型食物源及其稳定同位素变化特征;总结了草食、杂食和肉食等不同营养级动物的食物来源.指出了稳定同位素在湿地食物源溯源和食物网研究中的不足;基于国内外研究现状和发展趋势及需求,展望了未来同位素技术在湿地食物网生态学研究中的运用前景和研究重点,提出需要加强稳定同位素营养分馏和基线的影响因素、样品处理和保存方式研究以及胃含物、分子标记物和多元素同位素结合分析.  相似文献   

6.
土壤动物食物网研究方法   总被引:1,自引:0,他引:1  
长期以来关于陆地生态系统的研究都集中在地上部分,而对于地下部分知之甚少。地下生态系统营养关系是生态系统中各生物成员之间最重要的联系,是物质循环、能量流动的重要载体。研究土壤动物食物网已成为现代地下/土壤生态学研究的热点与前沿。由于土壤动物的个体小、食性复杂、栖息环境隐蔽等原因,使得对土壤动物食物网的研究困难重重,所以选择合适的研究方法尤为重要。本文总结了国际上近几十年来土壤动物食物网研究方法,将其分为传统方法(野外直接观察法、室内培养实验观察法、显微镜下肠容物分析法)、常用方法(消化酶分析法、脂肪酸分析法、稳定同位素技术、特定化合物分子的稳定同位素分析技术)和现代分子方法(DNA分子跟踪食物链网络技术、单克隆抗体技术)3大类,具体介绍了每一种方法的发展历史和应用现状。根据土壤动物自身特性及对各方法的优势与劣势的比较,脂肪酸分析法和稳定同位素分析法是当前土壤动物食物网研究的常用方法;随着未来物种分子鉴定技术的改进和数据库的积累,DNA分子跟踪食物链网络技术将会成为未来的主流发展方向。  相似文献   

7.
稳定同位素技术在植物水分利用研究中的应用   总被引:24,自引:0,他引:24  
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。  相似文献   

8.
水域生态学中生物稳定同位素样品采集、处理与保存   总被引:1,自引:0,他引:1  
稳定同位素分析技术由于能够刻画复杂的食物网结构并追踪食物网中的能量流而成为水域生态学研究中的重要手段。但是当水生生物样品采集、处理和保存过程中存在不确定性时, 营养关系分析中的同位素结果可能会产生误导性解释。文章采用数据模拟分析和文献总结的方法, 研究了水域生态系统中样品采集、处理和保存对于稳定同位素的影响, 概括性地建议了水域生态系统中适合应用稳定同位素分析技术开展生态学研究的样品采集、处理和保存的注意事项。但今后仍需进一步评估样品采集、处理和保存对稳定同位素比值的影响效果, 确定化学动力学在水生生物样品采集、处理和保存中的作用, 以进一步完善水生生物样品的采集、处理和保存稳定同位素生态学研究规范。  相似文献   

9.
东太平洋中部中上层鲨鱼群落营养生态位分化   总被引:1,自引:0,他引:1  
鲨鱼在大洋生态系统中占据着重要的生态地位,其作为顶级捕食者,通过下行效应直接影响生态系统的稳定.稳定同位素技术是目前研究摄食生态学强有力的手段之一,可利用碳氮稳定同位素在食物网中的特性分别指示鲨鱼的食物来源和营养级.本研究选取8种130尾采集自东太平洋中部的中上层鲨鱼,应用稳定同位素绘制其种群生态位图谱,比较不同种群间的生态地位及资源分配方式上的差异.结果表明:不同鲨鱼种群碳、氮稳定同位素比值存在显著差异;8种鲨鱼在东太平洋生态系统中的营养级为4.3~5.4,大青鲨、尖吻鲭鲨与其他6种鲨鱼存在摄食隔离,表现出独特的营养生态地位.这些结果充分证明大洋性中上层鲨鱼并非生态系统的冗余种,其营养生态位的独特性不会被其他捕食者简单地替代和弥补.  相似文献   

10.
跳虫在土壤生态系统中的作用   总被引:35,自引:2,他引:35  
跳虫是土壤生态系统中分布极广的一类小型至微型节肢动物。它们在土壤物质循环、土壤的发育及其微团聚体的形成、土壤理化特性和土壤生物群落的维护等诸多方面都发挥了重要作用。土壤中跳虫的多样性以及群落结构、物种组成都反映了土壤的质量和污染状况。本文介绍了跳虫在土壤生态系统的作用、生态学应用价值以及研究的现状和展望。  相似文献   

11.
Identifying and characterizing top predators’ use of trophic resources provides important information about animal ecology and their response to changing conditions. Information from sources such as stable isotopes can be used to infer changes in resource use as direct observations in the wild are difficult to obtain, particularly in the marine environment. Stable carbon and nitrogen isotope values were recovered from the canine teeth of grey seals collected from haul outs in the central North Sea in the 1970/1980s (n = 44) and 2000s (n = 25), spanning a period of marked ecosystem changes in the region. Extracting material deposited during juvenile and adult life‐stages, we reconstructed a multi‐decadal record of δ15N and δ13C variation. Using established correlations between stable isotope ratios and sea bottom temperature we created a proxy for baseline isotopic variability to account for this source of temporal change. We found 1) a significant long‐term decline in juvenile grey seal δ15N values, suggesting trophic position has decreased over time; 2) a decline in adult δ15N values and contraction in stable isotopic niche space after the North Sea regime shift, signifying both a decline in trophic position and change in foraging habits over the 20th century; and 3) evidence for dietary segregation between juvenile and adult animals, showing juvenile individuals feeding at a lower trophic position and in more nearshore areas than adults. Our results demonstrate the efficacy of mining archived biological samples to address ecological questions and imply important ontogenetic and long‐term shifts in the feeding ecology of a top predator. Long‐term changes in grey seal trophic dynamics may be partly in response to well documented ecosystem changes in the North Sea. Such indirect monitoring of marine predators may have utility when set in the context of ecosystem assessments where paucity of long‐term monitoring data is prevalent.  相似文献   

12.
Stable isotopes of carbon and nitrogen in soil ecological studies   总被引:3,自引:0,他引:3  
The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.  相似文献   

13.
土壤微食物网结构与生态功能   总被引:5,自引:0,他引:5  
土壤微食物网是碎屑食物网中与土壤生态过程密切相关的一部分,通过取食资源基质直接或间接地参与养分循环过程,影响陆地生态系统功能.本文从土壤微食物网的组成、结构和生态功能等方面综述了近年来土壤微食物网的研究进展.通过对土壤微食物网的能量通道及营养级联效应的介绍,阐述了土壤微食物网在碳(C)、氮(N)转化、凋落物分解和植物生长等方面的重要作用.针对目前的研究现状,提出未来土壤生态学研究应与高通量测序及稳定同位素技术相结合;通过构建模型进一步加强对土壤食物网结构和功能的研究,从而深入揭示地下生态过程及其对地上植物生长的反馈作用机理.  相似文献   

14.
1. Species diversities of some insect lineages have been attributed to differentiation of feeding habits among species. Our objective was to determine variation in diet composition among harpaline ground beetle species occurring in a riverside grassland. 2. We examined the diet compositions of 14 species from six genera in the spring and 10 species from two genera in the autumn. We performed measurements of nitrogen and carbon stable isotope ratios in consumers and in their potential food items, and estimated relative contributions of different food items with two mixing models, IsoSource and MixSIR. 3. IsoSource and MixSIR software gave similar results, but IsoSource tended to calculate higher contributions of principal food items and smaller percentile ranges than MixSIR. Among harparine beetle species, there were diverse food utilisation patterns among four food categories (detritivorous invertebrates, herbivorous invertebrates, C3 plants, and C4 plants). Detritivores comprised the main diets of abundant harpaline species in the spring, whereas abundant harpaline species in the autumn were primarily herbivores feeding on C4 plants, or omnivores feeding on herbivorous invertebrates and C3 plants. Seasonal changes in food use were related to seasonal changes in the abundance of each food resource. 4. Mixing model analysis of stable isotope ratios is a convenient and effective method for roughly estimating diets of many species with diverse food habits (such as ground beetles). This method can contribute to determining the trophic relationships of related insects in one ecosystem.  相似文献   

15.
Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community‐ and ecosystem‐wide effects of restoration.  相似文献   

16.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

17.
Carbon isotopes in functional soil ecology   总被引:10,自引:0,他引:10  
Soil is an integral part of terrestrial ecosystems. Many soil ecologists interested in soil ecosystem functioning rely, to some degree, on stable isotope methodologies. The study of the natural abundance of carbon isotopes, especially (13)C but also (14)C, in the environment and the use of stable carbon isotope tracers have proved very useful in investigating the soil carbon cycle and soil trophic relationships. Recent methodological and technical advances have greatly extended the possibilities for the application of stable carbon isotopes to terrestrial ecology and have vastly improved our knowledge of belowground ecosystem functioning and will continue to do so. A better understanding of soil processes is invaluable in predicting the future impacts of global environmental change on terrestrial ecosystems.  相似文献   

18.
In a novel, depauperate ecosystem, colonizing species may experience changes in their trophic niche as a result of a new resource base and fewer competitors and predators. To examine trophic niche shifts of recent colonists, we focused on three ecologically and phylogenetically divergent lizard species that inhabit both the geologically distinctive depauperate habitat of White Sands and the surrounding Chihuahuan ‘dark soil’ desert in New Mexico. In White Sands the three species comprise the entire lizard community, whereas in the dark soils habitat, they constitute less than half of the lizard community abundance. As a result, we hypothesized that the three focal species would collectively represent a greater variety of trophic positions in the White Sands habitat than in the dark soils habitat. We hypothesized that the extent of shifts in each species’ trophic position would parallel diet and ecomorphology differences between habitats. To test these hypotheses, we combined analysis of lizard stomach contents with carbon and nitrogen stable isotopes in the context of previously published ecomorphology measurements. Stable isotope data indicated that as predicted, species were more different from one another in White Sands than in dark soils, suggesting community‐wide ecological release. Overall, all species were lower on the White Sands food chain; however, only one species decreased trophic level significantly, one increased trophic level variance, and one did not change significantly. Furthermore, stomach content data paralleled both stable isotope and ecomorphological data, showing different degrees of dietary overlap between habitats, depending on the species. That species’ differences in trophic ecology also correspond with ecomorphological differences suggests that these factors are either causally linked or collectively responding to similar ecological pressures, such as competition. By examining diet, trophic position, and ecomorphology of three colonist species, we demonstrate both species‐specific and community‐wide trophic differences in adjacent, but distinct habitats.  相似文献   

19.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号