首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

3.
Rat liver fatty acid-binding protein (FABP) can function as a fatty acid donor protein for both peroxisomal and mitochondrial fatty acid oxidation, since 14C-labeled palmitic acid bound to FABP is oxidized by both organelles. FABP is, however, not detected in peroxisomes and mitochondria of rat liver by ELISA. Acyl-CoA oxidase activity of isolated peroxisomes was not changed by addition of FABP or flavaspidic acid, an inhibitor of fatty acid binding to FABP, nor by disruption of the peroxisomal membranes. These data indicate that FABP may transfer fatty acids to peroxisomes, but is not involved in the transport of acyl-CoA through the peroxisomal membrane.  相似文献   

4.
Medium-chain fatty acid synthesis   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
Steroidal fatty acid esters   总被引:1,自引:0,他引:1  
Several years ago we discovered an unexpected family of steroidal metabolites, steroidal fatty acid esters. We found that fatty acid esters of 5-ene-3β-hydroxysteroids, pregnenolone and dehydroisoandrosterone are present in the adrenal. Subsequently, others have shown the existence of these non-polar 5-ene-3β-hydroxysteroidal esters in blood, brain and ovaries. Currently, almost every family of steroid hormone is known to occur in esterified form. We have studied the esters of the estrogens and glucocorticoids in some detail, and have found that these two steroidal families are esterified by separate enzymes. In a biosynthetic experiment performed simultaneously with estrodiol and corticosterone, we established that the fatty acid composition of the steroidal esters is quite different. The corticoid is composed predominantly of one fatty acid, oleate, while the estradiol esters are extremely heterogeneous. Our studies have demonstrated that the estrogens are extremely long-lived hormones, that they are protected by the fatty acid from metabolism. They are extremely potent estrogens, with prolonged activity. Esterification appears to be the only form of metabolism that does not deactivate the biological effects of estradiol. We have demonstrated the biosynthesis of fatty acid esters of estriol, monoesters at both C-16 and C-17β. They too are very potent estrogens. These fatty acid esters of the estrogens are the endogenous analogs of estrogen esters, like benzoate, cypionate, etc., which have been used for decades, pharmacologically because of their prolonged therapeutic potency. We have found that the estradiol esters are located predominantly in hydrophobic tissues, such as fat. Sequestered in these tissues, they are an obvious reservoir of estrogenic reserve, requiring only an esterase for activation. To the contrary the biological activity of the fatty acid esters of the glucocorticoid, corticosterone, is not different from that of its free parent steroid. We have shown that the rapid kinetics of its induction of gluconeogenic responses is caused by its labile C-21 ester which is rapidly hydrolyzed by esterase enzymes. While it appears that the physiological role of the estrogen esters may be related to their long-lived hormonal activity, the role of the other families of steroidal esters is not yet apparent. They, and perhaps the estrogen esters as well, must serve other purposes. Indeed they may serve important biological functions beyond those which we ordinarily associate with steroid hormones.  相似文献   

7.
The effect of human bile juice and bile salts (sodium cholate, sodium taurocholate, sodium glycochenodeoxycholate and sodium chenodeoxycholate) on growth, sporulation and enterotoxin production by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens was determined. Each bile salt inhibited growth to a different degree. A mixture of bile salts completely inhibited the growth of enterotoxin-positive strains of this organism. Human bile juice completely inhibited the growth of all the strains at a dilution of 1:320. A distinct stimulatory effect of the bile salts on sporulation was observed in the case of C. perfringens strains NCTC 8239 and NCTC 8679. The salts also increased enterotoxin concentrations in the cell extracts of the enterotoxin-positive strains tested. No effect on enterotoxin production was detected when an enterotoxin-negative strain was examined.  相似文献   

8.
9.
10.
11.
Microbial fatty acid specificity   总被引:1,自引:0,他引:1  
Strains ofRhodotorula sp.,Candida spp. andLangermania sp. cultivated on polyunsaturated oil preferentially incorporated more unsaturated fatty acids. These fatty acids were used mainly for growth needs whereas the saturated ones accumulated in the microbial cell. The cellular oil and the remaining oil in the culture had a lower degree of unsaturation as compared to the initial oil, and a modified fatty acid composition.Candida lipolytica, in a chemostat continuous culture, incorporated C18 fatty acids in the order of C18:3>C18:2>C18:1>C18:0, and accumulated mostly the saturated ones. The specific productivity of the cellular oil and of the oil remaining in the culture medium was 0.036 and 0.487 gg−1 h−1, respectively, at dilution rateD=0.2/h.  相似文献   

12.
13.
14.
Intestinal fatty acid binding protein (IFABP) interacts with biological membranes and delivers fatty acid (FA) into them via a collisional mechanism. However, the membrane-bound structure of the protein and the pathway of FA transfer are not precisely known. We used molecular dynamics (MD) simulations with an implicit membrane model to determine the optimal orientation of apo- and holo-IFABP (bound with palmitate) on an anionic membrane. In this orientation, the helical portal region, delimited by the alphaII helix and the betaC-betaD and betaE-betaF turns, is oriented toward the membrane whereas the putative beta-strand portal, delimited by the betaB-betaC, betaF-betaG, betaH-betaI turns and the N terminus, is exposed to solvent. Starting from the MD structure of holo-IFABP in the optimal orientation relative to the membrane, we examined the release of palmitate via both pathways. Although the domains can widen enough to allow the passage of palmitate, fatty acid release through the helical portal region incurs smaller conformational changes and a lower energetic cost.  相似文献   

15.
Earlier, we described the isolation of a Crepis palaestina cDNA (Cpal2) which encoded a Delta12-epoxygenase that could catalyse the synthesis of 12,13-epoxy-cis-9-octadecenoic acid (18:1E) from linoleic acid (18:2). When the Cpal2 gene was expressed under the control of a seed-specific promoter in Arabidopsis, plants were able to accumulate small amounts 18:1E and 12,13-epoxy-cis-9,15-octadec-2-enoic acid in their seed lipids. In this report we give results obtained from a detailed analysis of transgenic Arabidopsis plants containing the Cpal2 gene. The seeds from these plants accumulate varying levels of 18:1E, but show a marked increase in 18:1 and equivalent decrease in 18:2 and 18:3. We further observed that the co-expression of a C. palaestina Delta12-desaturase in Arabidopsis appears to return the relative proportions of the C(18) seed fatty acids to normal levels and results in a 2-fold increase in total epoxy fatty acids.  相似文献   

16.
The fatty acid transport function of fatty acid-binding proteins   总被引:38,自引:0,他引:38  
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.  相似文献   

17.
Severe essential fatty acid deficiency (EFAD) was induced by feeding weanling rats a diet free of essential fatty acids 8 months after weaning. The fatty acid compositions of phospholipids and glycosphingolipids in peripheral nerve myelin were compared in rats with and without EFAD. With the deficient diet, 20:3ω9 was found in the major myelin phospholipids. The level of 18:1 was increased and the levels of 18:2ω6, 20:4ω6, and 22:4ω6 were decreased. Both sphingomyelin and cerebroside showed higher proportion of 24:1 and lower proportions of 24:0 in EFA-deficient rats than in control rats. The fatty acid chain elongating system in myelin cerebroside was also depressed by EFAD. A two- to sevenfold increase of the ratio 20:4ω6 to 20:3ω6 was found in myelin phospholipids of regenerated nerve from rats fed control diet. However, this ratio was suppressed by EFAD diet. The biochemical index (20:3ω9/20:4ω6) for EFAD was not affected by crush injury. These results suggest that dietary EFAD in postweaning rats can induce fatty acid alterations in peripheral nerve myelin without resulting in detectable changes in function or structure and that myelin lipids may be sequestered and reused during nerve degeneration and regeneration.  相似文献   

18.
Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.  相似文献   

19.
Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance1. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood.

Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human2, 3. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons3, 4. However, the recent study from the Ikeda Laboratory2 revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.  相似文献   

20.
S Mogelson  S J Pieper  L G Lange 《Biochemistry》1984,23(18):4082-4087
Myocardial homogenates rapidly synthesize fatty acyl ethyl esters from nonesterified fatty acid and ethanol in the absence of coenzyme A or ATP, and the enzyme catalyzing this reaction, fatty acid ethyl ester synthase, has been purified 5400-fold to homogeneity [Mogelson, S., & Lange, L. G. (1984) Biochemistry (preceding paper in this issue)]. To define the factors permitting this de novo synthesis of ester bonds and the consequent accumulation of fatty acyl ethyl esters in myocardium, we determined thermodynamic parameters relevant to the kinetics and equilibria of this reaction and specifically characterized (1) the rates of synthesis of ethyl oleate, in both the presence and absence of purified enzyme catalyst, and (2) the physical properties of the product, ethyl oleate, in an aqueous milieu. Compared to the reaction of ethanol and oleate in the absence of catalyst, fatty acid ethyl ester synthase enhanced the rate of ethyl oleate synthesis by reducing the free energy of activation (delta G) from 32.5 to 19.9 kcal/mol, effected in large part by a positive entropy shift, delta Senz - delta S uncat = 23.9 cal/(mol.deg). Rate constants in the presence and absence of enzyme at 37 degrees C were 6 X 10(-2) s-1 and 7.8 X 10(-11) M-1 s-1, respectively, indicating a catalytic power of at least 10(8)M for this enzyme. Kinetic data indicated an enzymatic Vmax of 1.25 nmol/(mg.s) (37 degrees C). The equilibrium constant was calculated for the reaction oleate + ethanol in equilibrium ethyl oleate and was 0.095 M-1 at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号