首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4D microscopic observations of Caenorhabditis elegans development show that the nematode uses an unprecedented strategy for development. The embryo achieves pattern formation by sorting cells, through far-ranging movements, into coherent regions before morphogenesis is initiated. This sorting of cells is coupled to their particular fate. If cell identity is altered by experiment, cells are rerouted to positions appropriate to their new fates even across the whole embryo. This cell behavior defines a new mechanism of pattern formation, a mechanism that is also found in other animals. We call this new mechanism "cell focusing". When the fate of cells is changed, they move to new positions which also affect the shape of the body. Thus, this process is also important for morphogenesis.  相似文献   

2.
It is known that mammalian primordial germ cells (PGCs), the precursors of oocytes and prospermatogonia, depend for survival and proliferation on specific growth factors and other undetermined compounds. Adhesion to neighboring somatic cells is also believed to be crucial for preventing PGC apoptosis occurring when they lose appropriate cell to cell contacts. This explains the current impossibility to maintain isolated mouse PGCs in culture for periods longer than a few hours in the absence of suitable cell feeder layers producing soluble factors and expressing surface molecules necessary for preventing PGTC apoptosis and stimulating their proliferation. In the present paper, we identified a cocktail of soluble growth factors, namely KL, LIF, BMP-4, SDF-1, bFGF and compounds (N-acetyl-L-cysteine, forskolin, retinoic acid) able to sustain the survival and self-renewal of mouse PGCs in the absence of somatic cell support. We show that under culture conditions allowing PGC adhesion to an acellular substrate, such growth factors and compounds were able to prevent the occurrence of significant levels of apoptosis in PGCs for two days, stimulate their proliferation and, when LIF was omitted from the cocktail, allow most of them to enter into and progress through meiotic prophase I. These results consent for the first time to establish culture conditions for purified mammalian PGCs in the absence of somatic cell support and should make easier the molecular dissection of the processes governing the development of such cells crucial for early gametogenesis.  相似文献   

3.
The c-ros, c-met and c-neu genes encode receptor-type tyrosine kinases and were originally identified because of their oncogenic potential. However, recent progress in the analysis of these receptors and their respective ligands indicate that they do not mediate exclusively mitogenic signals. Rather, they can induce cell movement, differentiation or morphogenesis of epithelial cells in culture. Interestingly, the discussed receptors are expressed in embryonal epithelia, whereas direct and indirect evidence shows that the corresponding ligands are produced in mesenchymal cells. In development, signals given by mesenchymal cells are major driving forces for differentiation and morphogenesis of epithelia; embryonal epithelia are generally unable to differentiate without the appropriate mesenchymal factors. The observed activities of these receptor/ligand systems in cultured cells and their expression patterns indicate that they regulate epithelial differentiation and morphogenesis also during embryogenesis and suggest thus a molecular basis for mesenchymal epithelial interactions.  相似文献   

4.
5.
Calvi BR  Byrnes BA  Kolpakas AJ 《Genetics》2007,177(3):1291-1301
There is much interest in how DNA replication origins are regulated so that the genome is completely duplicated each cell division cycle and in how the division of cells is spatially and temporally integrated with development. In the Drosophila melanogaster ovary, the cell cycle of somatic follicle cells is modified at precise times in oogenesis. Follicle cells first proliferate via a canonical mitotic division cycle and then enter an endocycle, resulting in their polyploidization. They subsequently enter a specialized amplification phase during which only a few, select origins repeatedly initiate DNA replication, resulting in gene copy number increases at several loci important for eggshell synthesis. Here we investigate the importance of these modified cell cycles for oogenesis by determining whether they have been conserved in evolution. We find that their developmental timing has been strictly conserved among Drosophila species that have been separate for approximately 40 million years of evolution and provide evidence that additional gene loci may be amplified in some species. Further, we find that the acetylation of nucleosomes and Orc2 protein binding at active amplification origins is conserved. Conservation of DNA subsequences within amplification origins from the 12 recently sequenced Drosophila species genomes implicates members of a Myb protein complex in recruiting acetylases to the origin. Our findings suggest that conserved developmental mechanisms integrate egg chamber morphogenesis with cell cycle modifications and the epigenetic regulation of origins.  相似文献   

6.
This study explores the origin of primordial germ cells (PGCs) of the mouse and examines their morphology and associations with other cells during early development. PGCs have been selectively stained by the alkaline phosphatase histochemical reaction and viewed by light and electron microscopy from the time they are first detectable in the yolk sac endoderm until they enter the gonadal ridges. There are conflicting reports as to whether the PGCs originate from endodermal cells or whether they originate elsewhere and subsequently enter the endoderm. The observations in the present study favor the premise that PGCs of the mouse do not originate in the endoderm. Furthermore, it was observed that PGCs undergo specific changes in morphology during the developmental period studied and this was interpreted to mean that, although PGCs are set aside early in development as a distinct cell line, they also continue to become more specialized within time. The germ cell line is rather unusual in that it does not exist as a discrete tissue but, instead, resides within various other tissues during its life history. This apparent dependence upon somatic cells is maintained even in adult animals and may be important in serving to maintain or modify the environment of the germ cells.  相似文献   

7.
The espins are a family of multifunctional actin cytoskeletal proteins. They are present in hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction. Here, we demonstrate that the different espin isoforms are expressed in complex spatiotemporal patterns during inner ear development. Espin 3 isoforms were prevalent in the epithelium of the otic pit, otocyst and membranous labyrinth as they underwent morphogenesis. This espin was down-regulated ahead of hair cell differentiation and during neuroblast delamination. Espin also accumulated in the epithelium of branchial clefts and pharyngeal pouches and during branching morphogenesis in other embryonic epithelial tissues, suggesting general roles for espins in epithelial morphogenesis. Espin reappeared later in inner ear development in differentiating hair cells. Its levels and compartmentalization to stereocilia increased during the formation and maturation of stereociliary bundles. Late in embryonic development, espin was also present in a tail-like process that emanated from the hair cell base. Increases in the levels of espin 1 and espin 4 isoforms correlated with stereocilium elongation and maturation in the vestibular system and cochlea, respectively. Our results suggest that the different espin isoforms play specific roles in actin cytoskeletal regulation during epithelial morphogenesis and hair cell differentiation.  相似文献   

8.
Mutant T cell lines that do not express the endogenous alpha- and/or beta-chain genes of the TCR were generated from the alpha beta TCR/CD3+ tumor cell line C6VL with a combination of classical mutagenesis methods and selection of somatic hybrid variants. This novel strategy obviated the need for repeated mutagenesis and screening of a large number of individual clones. The loss of either the alpha- or the beta-chain expression in the mutant cells was associated with the loss of surface TCR/CD3 complex, which could be rescued by the transfection of appropriate exogenous alpha- and/or beta-chain gene constructs. Because these cells express a single TCR molecule on the cell surface, they are useful for the study of the assembly and function of the alpha beta TCR. This strategy is also generally applicable for the generation of homozygous mutant cell lines lacking other gene products.  相似文献   

9.
Although local epithelial-mesenchymal tissue interactions which are presumably mediated by extracellular matrix molecules are important regulators of tooth morphogenesis and differentiation, our studies have indicated that these developmental processes also depend on circulating molecules. The iron-carrying serum protein transferrin is necessary for the early morphogenesis of mouse tooth in organ culture (A-M. Partanen, I. Thesleff, and P. Ekblom, 1984, Differentiation 27, 59-66). In the present study we have examined the effects of other growth factors on mouse tooth germs grown in a chemically defined medium containing transferrin. Fibroblast growth factor and platelet derived growth factor had no detectable effects but epidermal growth factor (EGF) inhibited dramatically the morphogenesis of teeth, and prevented odontoblast and ameloblast cell differentiation. EGF stimulated cell proliferation in the explants measured as [3H]thymidine incorporation in DNA. However, when the distribution of dividing cells was visualized in autoradiographs, it was observed that cell proliferation was stimulated in the dental epithelium but was inhibited in the dental mesenchyme. The inhibition of cell proliferation in the dental mesenchyme apparently caused the inhibition of morphogenesis. We do not know whether the dental epithelium or mesenchyme was the primary target for the action of EGF in the inhibition of morphogenesis. It is, however, apparent that the response of the dental mesenchymal cells to EGF (inhibition of proliferation) is regulated by their local environment, since EGF enhanced proliferation when these cells were disaggregated and cultured as monolayers. This indicates that the organ culture system where the various embryonic cell lineages are maintained in their original environment corresponds better to the in vivo situation when the roles of exogenous growth factors during development are examined.  相似文献   

10.
J S Keddie  B Carroll  J D Jones    W Gruissem 《The EMBO journal》1996,15(16):4208-4217
The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.  相似文献   

11.
Migration of primordial germ cells (PGCs) from their site of specification towards the developing gonad is controlled by directional cues from somatic tissues. Although in several animals the PGCs are attracted by signals emanating from their final target, the gonadal mesoderm, little is known about the mechanisms that control earlier steps of migration. We provide evidence that a key step of zebrafish PGC migration, in which the PGCs become organized into bilateral clusters in the anterior trunk, is regulated by attraction of PGCs towards an intermediate target. Time-lapse observations of wild-type and mutant embryos reveal that bilateral clusters are formed at early somitogenesis, owing to migration of PGCs towards the clustering position from medial, posterior and anterior regions. Furthermore, PGCs migrate actively relative to their somatic neighbors and they do so as individual cells. Using mutants that exhibit defects in mesoderm development, we show that the ability to form PGC clusters depends on proper differentiation of the somatic cells present at the clustering position. Based on these findings, we propose that these somatic cells produce signals that attract PGCs. Interestingly, fate-mapping shows that these cells do not give rise to the somatic tissues of the gonad, but rather contribute to the formation of the pronephros. Thus, the putative PGC attraction center serves as an intermediate target for PGCs, which later actively migrate towards a more posterior position. This final step of PGC migration is defective in hands off mutants, where the intermediate mesoderm of the presumptive gonadal region is mispatterned. Our results indicate that zebrafish PGCs are guided by attraction towards two signaling centers, one of which may represent the somatic tissues of the gonad.  相似文献   

12.
13.
Cell-cell signaling and adhesion are critical for establishing tissue architecture during development and for maintaining tissue architecture and function in the adult. Defects in adhesion and signaling can result in mislocalization of cells, uncontrolled proliferation and improper differentiation, leading to tissue overgrowth, tumor formation, and cancer metastasis. An important example is found in the germline. Germ cells that are not incorporated into the gonad exhibit a greater propensity for forming germ cell tumors, and defects in germline development can reduce fertility. While much attention is given to germ cells, their development into functional gametes depends upon somatic gonadal cells. The study of model organisms has provided great insights into how somatic gonadal cells are specified, the molecular mechanisms that regulate gonad morphogenesis, and the role of germline-soma communication in the establishment and maintenance of the germline stem cell niche. This work will be discussed in the context of Drosophila melanogaster.  相似文献   

14.
15.
Vegetal pole cells and commitment to form endoderm in Xenopus laevis   总被引:3,自引:0,他引:3  
In order to compare their states of commitment with their normal developmental fate, single vegetal pole cells from early Xenopus embryos were labeled and transplanted into the blastocoels of host embryos. In a previous study we showed, using this single cell transplantation assay, that vegetal pole cells become committed to endoderm by the early gastrula stage. In this paper we examine some properties of the commitment process. First, we show that it is gradual. When vegetal blastomeres are taken from progressively older embryos an increasing number of them enter only the endoderm, until by the early gastrula stage they all do. Second, we show that commitment can continue in vitro when an appropriate tissue mass is present. We suggest that commitment to form endoderm may be, in the right conditions, a cell autonomous process.  相似文献   

16.
We consider some of the problems involved in current discussions on stem cells in adult mammalian tissues. The present concepts involve a number of pitfalls, weaknesses and logical, semantic and classification problems. This indicates the necessity for new and well-defined concepts that are amenable to experimental analysis. One of the major difficulties in considering stem cells is that they are defined in terms of their functional capabilities which can only be assessed by testing the abilities of the cells, which itself may alter their characteristics during the assay procedure: a situation similar to the uncertainty principle in physics. The terms that describe stem cell functions are often not well defined and are used loosely, which can lead to confusion. If such context-dependent interactions exist between the manipulation and measurement process and the challenged stem cells, the question of, for example, the number of stem cells, in a tissue has to be posed in a new way. Rather than obtaining a single number one might end up with various different numbers under different circumstances, all being complementary. This might suggest that stemness is not a property but a spectrum of capabilities from which to choose. This concept might facilitate a reconciliation between the different and sometimes opposing experimental results. Given certain experimental evidence, we have attempted to provide a novel concept to describe structured cell populations in tissues involving stem cells, transit cells and mature cells. It is based on the primary assumption that the proliferation and differentiation/maturation processes are in principle independent entities in the sense that each may proceed without necessarily affecting the other. Stem cells may divide without maturation while cells approaching functional competence may mature but do not divide. In contrast, transit cells divide and mature showing intermediate properties between stem cells and mature functional cells. The need to describe this transition process and the variable coupling between proliferation and maturation leads us to formulate a spiral model of cell and tissue organisation. This concept is illustrated for the intestinal epithelium. It is concluded that the small intestinal crypts contain 4-16 actual stem cells in steady state but up to 30-40 potential stem cells (clonogenic cells) which may take over stem cell properties following perturbations. This implies that transit cells can under certain circumstances behave like actual stem cells while they undergo maturation under other conditions. There is also evidence that the proliferation and differentiation/maturation processes are subject to controls that ultimately lead to a change in the spiral trajectories.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Cells that have become unwanted need to be promptly, selectively, and safely removed. This is made possible by apoptosis-dependent phagocytosis, in which cells unnecessary, obstructive, or dangerous to organisms are induced to undergo apoptosis so that they are earmarked for phagocytosis. The phagocytic elimination occurs so quickly that cells with hallmarks of apoptosis are barely detectable in vivo. The removal of particular types of cells at appropriate stages of development not only contributes to the disposal of spent cells, the creation of space for morphogenesis, and the exclusion of pathogenic or noxious cells, but seems to actively control tissue renewal, tissue remodeling, tissue function, and pathogenic state. This event thus plays an indispensable role in the maintenance of animal development and tissue homeostasis.  相似文献   

18.
Stem cells, cell transplantation and liver repopulation   总被引:3,自引:0,他引:3  
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.  相似文献   

19.
Cancers often express hundreds of genes otherwise specific to germ cells, the germline/cancer (GC) genes. Here, we present and discuss the hypothesis that activation of a “germline program” promotes cancer cell malignancy. We do so by proposing four hallmark processes of the germline: meiosis, epigenetic plasticity, migration, and metabolic plasticity. Together, these hallmarks enable replicative immortality of germ cells as well as cancer cells. Especially meiotic genes are frequently expressed in cancer, implying that genes unique to meiosis may play a role in oncogenesis. Because GC genes are not expressed in healthy somatic tissues, they form an appealing source of specific treatment targets with limited side effects besides infertility. Although it is still unclear why germ cell specific genes are so abundantly expressed in cancer, from our hypothesis it follows that the germline's reproductive program is intrinsic to cancer development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号