首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human respiratory syncytial virus (HRSV) is a major cause of viral lower respiratory tract infections among infants and young children. HRSV strains vary genetically and antigenically and have been classified into two broad subgroups, A and B (HRSV-A and HRSV-B, respectively). To date, little is known about the circulating strains of HRSV in Latin America. We have evaluated the genetic diversity of 96 HRSV strains by sequencing a variable region of the G protein gene of isolates collected from 2007 to 2009 in Central and South America. Our results show the presence of the two antigenic subgroups of HRSV during this period with the majority belonging to the genotype HRSV-A2.  相似文献   

2.
Jang JE  Lee JB  Kim KH  Park SM  Shim BS  Cheon IS  Song MK  Chang J 《PloS one》2011,6(9):e23797
Human respiratory syncytial virus (HRSV) is a significant cause of upper and lower respiratory tract illness mainly in infants and young children worldwide. HRSV is divided into two subgroups, HRSV-A and HRSV-B, based on sequence variation within the G gene. Despite its importance as a respiratory pathogen, there is currently no safe and effective vaccine for HRSV. In this study, we have detected and identified the HRSV by RT-PCR from nasopharyngeal aspirates of Korean pediatric patients. Interestingly, all HRSV-B isolates exhibited unique deletion of 6 nucleotides and duplication of 60 nucleotides in the G gene. We successfully amplified two isolates ('KR/A/09-8' belonging to HRSV-A and 'KR/B/10-12' to HRSV-B) on large-scale, and evaluated the cross-protective efficacy of our recombinant adenovirus-based HRSV vaccine candidate, rAd/3xG, by challenging the immunized mice with these isolates. The single intranasal immunization with rAd/3xG protected the mice completely from KR/A/09-8 infection and partially from KR/B/10-12 infection. Our study contributes to the understanding of the genetic characteristics and distribution of subgroups in the seasonal HRSV epidemics in Korea and, for the first time, to the evaluation of the cross-protective efficacy of RSV vaccine against HRSV-A and -B field-isolates.  相似文献   

3.
Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. In this study, we have analyzed nucleotide sequences encompassing 629 bp at the carboxy terminus of the G glycoprotein gene for HRSV subgroup A strains isolated over 47 years, including 112 Belgian strains isolated over 19 consecutive years (1984 to 2002). By using a maximum likelihood method, we have tested the presence of diversifying selection and identified 13 positively selected sites with a posterior probability above 0.5. The sites under positive selection correspond to sites of O glycosylation or to amino acids that were previously described as monoclonal antibody-induced in vitro escape mutants. Our findings suggest that the evolution of subgroup A HRSV G glycoprotein is driven by immune pressure operating in certain codon positions located mainly in the second hypervariable region of the ectodomain. Phylogenetic analysis revealed the prolonged cocirculation of two subgroup A lineages among the Belgian population and the possible extinction of three other lineages. The evolutionary rate of HRSV subgroup A isolates was estimated to be 1.83 x 10(-3) nucleotide substitutions/site/year, projecting the most recent common ancestor back to the early 1940s.  相似文献   

4.
A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen.  相似文献   

5.
Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child''s serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.  相似文献   

6.
Human respiratory syncytial virus (HRSV) is a major cause of acute lower respiratory tract infections in infants and children worldwide. We performed molecular analysis of HRSV among infants and children with clinical diagnosis of severe pneumonia in four study sites in the Philippines, including Biliran, Leyte, Palawan, and Metro Manila from June 2012 to July 2013. Nasopharyngeal swabs were collected and screened for HRSV using real-time polymerase chain reaction (PCR). Positive samples were tested by conventional PCR and sequenced for the second hypervariable region (2nd HVR) of the G gene. Among a total of 1,505 samples, 423 samples were positive for HRSV (28.1%), of which 305 (72.1%) and 118 (27.9%) were identified as HRSV-A and HRSV-B, respectively. Two genotypes of HRSV-A, NA1 and ON1, were identified during the study period. The novel ON1 genotype with a 72-nucleotide duplication in 2nd HVR of the G gene increased rapidly and finally became the predominant genotype in 2013 with an evolutionary rate higher than the NA1 genotype. Moreover, in the ON1 genotype, we found positive selection at amino acid position 274 (p<0.05) and massive O- and N-glycosylation in the 2nd HVR of the G gene. Among HRSV-B, BA9 was the predominant genotype circulating in the Philippines. However, two sporadic cases of GB2 genotype were found, which might share a common ancestor with other Asian strains. These findings suggest that HRSV is an important cause of severe acute respiratory infection among children in the Philippines and revealed the emergence and subsequent predominance of the ON1 genotype and the sporadic detection of the GB2 genotype. Both genotypes were detected for the first time in the Philippines.  相似文献   

7.
Molecular surveillance of HRSV in Belgium for 15 consecutive seasons (1996–2011) revealed a shift from a regular 3-yearly cyclic pattern, into a yearly alternating periodicity where HRSV-B is replaced by HRSV-A. Phylogenetic analysis for HRSV-A demonstrated the stable circulation of GA2 and GA5, with GA2 being dominant over GA5 during 5 consecutive seasons (2006–2011). We also identified 2 new genotype specific amino acid mutations of the GA2 genotype (A122 and Q156) and 7 new GA5 genotype specific amino acid mutations (F102, I108, T111, I125, D161, S191 and L217). Several amino acid positions, all located in the second hypervariable region of HRSV-A were found to be under positive selection. Phylogenetic analysis of HRSV-B showed the circulation of GB12 and GB13, where GB13 represented 100% of the isolated strains in 4 out of 5 consecutive seasons (2007–2011). Amino acids under positive selection were all located in the aminoterminal hypervariable region of HRSV-B, except one amino acid located in the conserved region. The genotype distribution within the HRSV-B subgroup has evolved from a co-circulation of multiple genotypes to the circulation of a single predominant genotype. The Belgian GB13 strains circulating since 2006, all clustered under the BAIV branch and contained several branch specific amino acid substitutions. The demographic history of genotypes GA2, GA5 and GB13 demonstrated a decrease in the total GA2 and GA5 population size, coinciding with the global expansion of the GB13 population. The emergence of the GB13 genotype resulted in a newly established balance between the predominant genotypes.  相似文献   

8.
人呼吸道合胞病毒(Human respiratory syncytial virus,HRSV)是导致儿童急性呼吸道感染的最重要的呼吸道病毒之一。根据对单克隆抗体的反应,HRSV分为A、B两个亚型。为探讨严重急性呼吸道感染(Severe acute respi-ratory infection,SARI)病例中HRSV全基因组基因特征,本研究对2017年河南省漯河市住院SARI病例中检测到的1株HRSV A亚型病毒通过Sanger测序方法对其全基因组序列进行了测定和分析。通过Sequencher 5.4.5、MEGA 5.05、BioEdit 7.0.5等生物信息学软件进行序列拼接和比对,进行了基因亲缘性关系分析、氨基酸变异和糖基化位点分析。基于HRSV全基因组序列和11个单个蛋白基因序列构建的亲缘性关系分析结果提示本研究中检测到的这株HRSVA病毒(RSVAs/Luohe.Henan/CHN/42.17)属于ON1基因型,该型是我国近年流行的优势基因型。该病毒全基因组序列与35条全球代表株的核苷酸和氨基酸同源性分别为92.69%~99.82%和93.63%~99.67%;G蛋白编码区氨基酸变异最高,而F蛋白相对保守。糖基化位点分析发现,该病毒的F蛋白有6个N-糖基化位点,未发现O-糖基化位点,此结果与原型株long株相同;G蛋白N-糖基化位点有6个,O-糖基化位点为82个,而原型株long株有11个N-糖基化位点,15个O-糖基化位点。本研究对2017年河南省漯河市SARI病例中一株HRSVA病毒全基因组序列进行了测定,与世界其他地区报道的HRSVA亚型病毒全基因组序列进行了对比分析,揭示了SARI病例中我国HRSV优势流行ON1基因型病毒全基因组的核苷酸和氨基酸变异特征,以及G蛋白和F蛋白编码区糖基化情况,丰富了我国HRSV基因数据库,也为HRSV的核酸检测方法的建立、疫苗研发和预防性单克隆抗体的评价提供了核苷酸和氨基酸的基础数据。  相似文献   

9.
Respiratory syncytial (RS) virus causes repeated infections throughout life. Between the two main antigenic subgroups of RS virus, there is antigenic variation in the attachment protein G. The antigenic differences between the subgroups appear to play a role in allowing repeated infections to occur. Antigenic differences also occur within subgroups; however, neither the extent of these differences nor their contributions to repeat infections are known. We report a molecular analysis of the extent of diversity within the subgroup B RS virus attachment protein genes of viruses isolated from children over a 30-year period. Amino acid sequence differences as high as 12% were observed in the ectodomains of the G proteins among the isolates, whereas the cytoplasmic and transmembrane domains were highly conserved. The changes in the G-protein ectodomain were localized to two areas on either side of a highly conserved region surrounding four cysteine residues. Strikingly, single-amino-acid coding changes generated by substitution mutations were not the only means by which change occurred. Changes also occurred by (i) substitutions that changed the available termination codons, resulting in proteins of various lengths, and (ii) a mutation introduced by a single nucleotide deletion and subsequent nucleotide insertion, which caused a shift in the open reading frame of the protein in comparison to the other G genes analyzed. Fifty-one percent of the G-gene nucleotide changes observed among the isolates resulted in amino acid coding changes in the G protein, indicating a selective pressure for change. Maximum-parsimony analysis demonstrated that distinct evolutionary lineages existed. These data show that sequence diversity exists among the G proteins within the subgroup B RS viruses, and this diversity may be important in the immunobiology of the RS viruses.  相似文献   

10.
The variability of the G glycoprotein from human respiratory syncytial viruses (HRSV) (groups A and B) isolated during 17 consecutive epidemics in Montevideo, Uruguay have been analyzed. Several annual epidemics were studied, where strains from groups A and B circulated together throughout the epidemics with predominance of one of them. Usually, group A predominates, but in some epidemics group B is more frequently detected. To analyse the antigenic diversity of the strains, extracts of cells infected with different viruses of group A were tested with a panel of anti-G monoclonal antibodies (MAbs). The genetic variability of both groups was analyzed by sequencing the C-terminal third of the G protein gene. The sequences obtained together with previously published sequences were used to perform phylogenetic analyses. The data from Uruguayan isolates, together with those from the rest of the world provide information regarding worldwide strain circulation. Phylogenetic analyses of HRSV from groups A and B show a model of evolution analogous to the one proposed for influenza B viruses providing information that would be beneficial for future immunization programs and to design safe vaccines.  相似文献   

11.
Munday DC  Hiscox JA  Barr JN 《Proteomics》2010,10(23):4320-4334
Human respiratory syncytial virus (HRSV) is a leading cause of serious lower respiratory tract infections in infants. The virus has two subgroups A and B, which differ in prevalence and (nucleotide) sequence. The interaction of subgroup A viruses with the host cell is relatively well characterized, whereas for subgroup B viruses it is not. Therefore quantitative proteomics was used to investigate the interaction of subgroup B viruses with A549 cells, a respiratory cell line. Changes in the cellular proteome and potential canonical pathways were determined using SILAC coupled to LC-MS/MS and Ingenuity Pathway Analysis. To reduce sample complexity and investigate potential trafficking both nuclear and cytoplasmic fractions were analyzed. A total of 904 cellular and six viral proteins were identified and quantified, of which 112 cellular proteins showed a twofold or more change in HRSV-infected cells. Data sets were validated using indirect immunofluorescence confocal microscopy on independent samples. Major changes were observed in constituents of mitochondria including components of the electron transport chain complexes and channels, as well as increases in the abundance of the products of interferon-stimulated genes. This is the first quantitative proteomic analysis of cells infected with HRSV-subgroup B.  相似文献   

12.
The complete genome sequence of human respiratory syncytial virus genotype A (HRSV-A) with a 72-nucleotide duplication in the C-terminal part of the attachment protein G gene was determined and analyzed. The genome was 15,277 bp in length, and 0.46 to 6.03% variations were identified at the nucleotide level compared with the previously reported complete genome of HRSV-A. Characterization of the genome will improve understanding of the diversity of the HRSV-A major antigens and enable an in-depth analysis of its genetics.  相似文献   

13.
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.  相似文献   

14.
Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, The Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.  相似文献   

15.
A maximum-likelihood analysis of selection pressures acting on the attachment (G) glycoprotein gene of respiratory syncytial virus (RSV) from humans (HRSV) and bovines (BRSV) is presented. Six positively selected sites were identified in both group A and group B of HRSV, although only one site was common between them, while no positively selected sites were detected in BRSV. All positively selected sites were located within the ectodomain of the G protein and showed some association with positions of immunoglobulin (Ig) epitopes and sites of O-glycosylation. These results suggest that immune (antibody)-driven natural selection is an important determinant of RSV evolution and that this selection pressure differs among strains. The passage histories of RSV strains were also shown to affect the distribution of positively selected sites, particularly in HRSV B, and should be considered whenever retrospective analysis of adaptive evolution is undertaken. Received: 15 August 2000 / Accepted: 2 November 2000  相似文献   

16.
Human respiratory syncytial virus (RSV) exists as two antigenic subgroups, A and B, both of which should be represented in a vaccine. The F and G glycoproteins are the major neutralization and protective antigens, and the G protein in particular is highly divergent between the subgroups. The existing system for reverse genetics is based on the A2 strain of RSV subgroup A, and most efforts to develop a live attenuated RSV vaccine have focused on strain A2 or other subgroup A viruses. In the present study, the development of a live attenuated subgroup B component was expedited by the replacement of the F and G glycoproteins of recombinant A2 virus with their counterparts from the RSV subgroup B strain B1. This gene replacement was initially done for wild-type (wt) recombinant A2 virus to create a wt AB chimeric virus and then for a series of A2 derivatives which contain various combinations of A2-derived attenuating mutations located in genes other than F and G. The wt AB virus replicated in cell culture with an efficiency which was comparable to that of the wt A2 and B1 parents. AB viruses containing temperature-sensitive mutations in the A2 background exhibited levels of temperature sensitivity in vitro which were similar to those of A2 viruses bearing the same mutations. In chimpanzees, the replication of the wt AB chimera was intermediate between that of the A2 and B1 wt viruses and was accompanied by moderate rhinorrhea, as previously seen in this species. An AB chimeric virus, rABcp248/404/1030, which was constructed to contain a mixture of attenuating mutations derived from two different biologically attenuated A2 viruses, was highly attenuated in both the upper and lower respiratory tracts of chimpanzees. This attenuated AB chimeric virus was immunogenic and conferred a high level of resistance on chimpanzees to challenge with wt AB virus. The rABcp248/404/1030 chimeric virus is a promising vaccine candidate for RSV subgroup B and will be evaluated next in humans. Furthermore, these results suggest that additional attenuating mutations derived from strain A2 can be inserted into the A2 background of the recombinant chimeric AB virus as necessary to modify the attenuation phenotype in a reasonably predictable manner to achieve an optimal balance between attenuation and immunogenicity in a virus bearing the subgroup B antigenic determinants.  相似文献   

17.
18.
BBG2Na is a recombinant protein, composed in part of carrier protein BB and of the central conserved domain of the attachment glycoprotein G of human respiratory syncytial virus (HRSV) subgroup A. This protein is a potent vaccine candidate against HRSV. G2Na contains several contiguous B-cell epitopes, occupying sequential positions in the linear sequence of the protein. One of the epitopes contains four cysteines that are completely conserved in known strains of HRSV and form a 'cysteine noose' motif. In this study, we analysed circular dichroism (CD) spectra of BBG2Na and its B-cell epitopes. We also used NMR and molecular dynamics simulations to determine the three-dimensional structure of the cysteine noose domain. We observed significant structural differences related to the length of peptides containing the cysteine noose. These differences show good correlation with the immunogenic activity of the peptides. It is shown that a single Val(171) addition induces a pronounced structure stabilization of the cysteine noose peptide G4a (1-4/2-3) (residues 172-187), which is associated with a 100-fold increase in its antigenicity vis-à-vis a G-protein specific monoclonal antibody.  相似文献   

19.
20.
The env gene of avian leukosis-sarcoma viruses encodes a glycoprotein that determines the host range and surface antigenicitiy of virions. We have purified radioactive DNA (cDNAgp) complementary to at least a portion of the env gene for viral subgroups A and C; complementary DNA was synthesized with purified virions of wild-type avian sarcoma virus, and RNA from a mutant with a deletion in env was used to select DNA specific to env by molecular hybridization. The genetic complexity of cDNAgp for subgroup A (ca. 2,000 nucleotides) was sufficient to represent the entire deletion and most or all of the env cistron. The deletions in env in two independently isolated strains of virus (Bryan and rdNY8SR) overlap, and cDNAgp represents nucleotide sequences common to both deletions. By contrast, we could detect no overlap between deletions in env and deletions in the adjacent viral gene src. Laboratory stocks of viral subgroups A, B, C, D and E do not contain detectable amounts of env deletions when tested by molecular hybridization; hence, segregation of deletions in env is a less frequent event that the segregation of deletions in the viral transforming gene src (Vogt, 1971). We found extensive homology among the nucleotide sequences encoding the env genes of virus strains indigenous to chickens (subgroups A, B, C, D, and E) although subgorups B, D and E appear to differ slightly from subgroups A and C at the env locus. By contrast, viruses obtained from pheasant cells (subgroups F and G) have env genes with little or no relationship to env genes of chikcen viruses. According to available data, viruses of subgroup F arose by recombination between an avarian sarcoma virus and viral genes in the genome of ring-necked pheasants, whereas subgroup G viruses may be entirely endogenous to golden pheasants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号