首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinin activity of forty-eight 6-benzyladenosine derivatives at both the receptor and cellular levels as well as their anticancer properties were compared in various in vitro assays. The compounds were prepared by the condensation of 6-chloropurine riboside with corresponding substituted benzylamines and characterized by standard collection of physico-chemical methods. The majority of synthesized derivatives exhibited high activity in all three of the cytokinin bioassays used (tobacco callus, wheat leaf senescence and Amaranthus bioassay). The highest activities were observed in the senescence bioassay. For several of the compounds tested, significant differences in activity were found between the bioassays used, indicating that diverse recognition systems may operate. This suggests that it may be possible to modulate particular cytokinin-dependent processes with specific compounds. In contrast to their high activity in bioassays, the tested compounds were recognized with only very low sensitivity in both Arabidopsis thaliana AHK3 and AHK4 receptor assays. The prepared derivatives were also investigated for their antiproliferative properties on cancer and normal cell lines. Several of them showed very strong cytotoxic activity against various cancer cell lines. On the other hand, they were not cytotoxic for normal murine fibroblast (NIH/3T3) cell line. This anticancer activity of cytokinin ribosides may be important, given that several of them occur as endogenous compounds in different organisms.  相似文献   

2.
Recently we reported 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55) as the first molecule to antagonize cytokinin activity at the receptor level. Here we report the synthesis and in vitro biological testing of eleven BAP derivatives substituted in the benzyl ring and in the C2, N7 and N9 positions of the purine moiety. The ability of the compounds to interact with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 was tested in bacterial receptor and in live-cell binding assays, and in an Arabidopsis ARR5:GUS (Arabidopsis response regulator 5) reporter gene assay. Cytokinin activity of the compounds was determined in classical cytokinin biotests (tobacco callus, wheat leaf senescence and Amaranthus bioassays). 6-(2,5-Dihydroxybenzylamino)purine (LGR-991) was identified as a cytokinin receptor antagonist. At the molecular level LGR-991 blocks the cytokinin receptor CRE1/AHK4 with the same potency as PI-55. Moreover, LGR-991 acts as a competitive inhibitor of AHK3, and importantly shows reduced agonistic effects in comparison to PI-55 in the ARR5:GUS reporter gene assay and in cytokinin bioassays. LGR-991 causes more rapid germination of Arabidopsis seeds and increases hypocotyl length of dark-grown seedlings, which are characteristics of plants with a reduced cytokinin status. LGR-991 exhibits a structural motive that might lead to preparation of cytokinin antagonists with a broader specificity and reduced agonistic properties.  相似文献   

3.
To determine the structure-activity relationships of natural aromatic cytokinins, the activity of 6-benzylaminopurine (BAP) and its hydroxylated derivatives was compared in three bioassays based on stimulation of tobacco callus growth, retention of chlorophyll in excised wheat leaves, and dark induction of betacyanin synthesis in Amaranthus cotyledons. The aromatic cytokinins 6-(2-hydroxybenzylamino)purine (ortho-topolin) and 6-(3-hydroxybenzylamino)purine (meta-topolin), their 9-ribosides and 9-glucosides, were synthesized by the condensation of 6-chloropurine and its 9-glycosides with the appropriate hydroxybenzylamine. The activity of free bases, 9-ribosides and 9-glucosides was compared with that of BAP, trans-zeatin and their 9-glycosides. Hydroxylation of the benzyl ring in the meta position increased the activity of BAP and its riboside in tobacco callus and chlorophyll retention bioassays, whereas ortho-hydroxylation decreased the activity. In contrast, in the Amaranthus bioassay meta-hydroxylation of BAP substantially decreased its activity. Ribosylation at position 9 had no significant effect on the activity of zeatin, BAP and both topolins. The activity of 9-glucosides of all cytokinins tested was near zero. The biological activity of meta-topolin and its riboside is comparable to that of the most active isoprenoid cytokinin, zeatin, in tobacco callus growth and senescence bioassays. The results establish the existence of a family of endogenous aromatic cytokinins centered around the highly active compound, meta-topolin. We also report here an improved chlorophyll retention bioassay based on incubation of 2.5 cm long detached wheat leaf segments in microtiter plate wells containing 150 µl of cytokinin solution. The consumption of cytokinin to be tested is 0.1 µmol per assay only. The amount as small as 1.5 pmol of substance can be estimated using this biotest.  相似文献   

4.
The first isolated cytokinin, 6-furfurylaminopurine (kinetin or Kin), was identified almost 55 years ago. Its biological effects on plant cells and tissues include influences on such processes as gene expression, cell cycle, chloroplast development, chlorophyll biosynthesis, stimulation of vascular development, delay of senescence, and mobilization of nutrients. In the present study we prepared a series of eight N9-substituted Kin derivatives, and characterized them with available physicochemical methods such as CI+ mass spectrometry and 1H NMR spectroscopy. All compounds were tested in three classical cytokinin bioassays: a tobacco callus assay, an Amaranthus assay, and a senescence assay with excised wheat leaves. The ability of the compounds to interact with Arabidopsis cytokinin receptors CRE1/AHK4 and AHK3 was tested in a bacterial receptor assay. Prepared derivatives with certain substitutions of the N9-atom of the purine moiety enhanced the cytokinin activity of the parent compound in the bioassays to a remarkable degree but negatively affected its perception by CRE1/AHK4 and AHK3. The ability of compounds to delay the senescence of excised wheat leaves in both dark and light conditions, was highly correlated with their ability to influence membrane lipid peroxidation, which is a typical symptom of senescence. Our results were corroborated by gene expression profiling of those genes involved in cytokinin metabolism and perception, plant senescence, and the stress response, and suggest that prepared kinetin derivatives might be used as potent anti-senescence agents.  相似文献   

5.
Cytokinins are naturally occurring substances that act as plant growth regulators promoting plant growth and development, including shoot initiation and branching, and also affecting apical dominance and leaf senescence. Aromatic cytokinin 6-benzylaminopurine (BAP) has been widely used in micropropagation systems and biotechnology. However, its 9-glucoside (BAP9G) accumulates in explants, causing root inhibition and growth heterogenity. To overcome BAP disadvantages, a series of ring-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives was prepared and examined in different classical cytokinin bioassays. Amaranthus, senescence and tobacco callus bioassays were employed to provide details of cytokinin activity of 2′-deoxy-9-(β)-d-ribosides compared to their respective free bases and ribosides. The prepared derivatives were also tested for their recognition by cytokinin receptors of Arabidopsis thaliana AHK3 and CRE1/AHK4. The ability of aromatic N6-substituted adenine-2′-deoxy-9-(β)-d-ribosides to promote plant growth and delay senescence was increased considerably and, in contrast to BAP, no loss of cytokinin activity at higher concentrations was observed. The presence of a 2′-deoxyribosyl moiety at the N9-position led to an increase in cytokinin activities in comparison to the free bases and ribosides. The antioxidant capacity, cytotoxicity and effect on the MHV-68 gammaherpesvirus strain were also examined.  相似文献   

6.
In a number of cytokinin bioassays, the activities of the following compounds were compared: 3-, 7-, and 9-glucosides of 6-benzylaminopurine (BAP); 7- and 9-glucosides of zeatin; O-glucosides of zeatin, dihydrozeatin, and their ribosides; 9-alanine conjugates of zeatin, and BAP. The bioassays included the radish cotyledon, theAmaranthus betacyanin, the oat leaf senescence, and the tobacco pith callus. Cytokinin activity was markedly reduced by 7- and 9-glucosylation in nearly all bioassays, but 3-glucosylation of BAP and O-glucosylation of the zeatin sidechain usually had little effect on activity. However, there were two notable exceptions to this generalization: the activity of O-glucosylzeatin markedly exceeded that of zeatin in the oat leaf senescence assay; 9-glucosyl-BAP and free BAP were similarly active in retarding the senescence of radish leaf discs. The 9-alanine conjugate of zeatin (lupinic acid) and of BAP were markedly less active than zeatin and BAP, respectively, in all bioassays, but the responses evoked by these conjugates at high concentrations in theAmaranthus bioassay approached those caused by the corresponding base. The activities of several new compounds related to the alanine conjugate of BAP were also assessed. To serve as a guide in the selection of the most suitable bioassay for detection of the above-mentioned cytokinin conjugates, the lowest detectable amounts in selected bioassays have been compared.  相似文献   

7.
Rational design is one of the latest ways how to evaluate particular activity of signal molecules, for example cytokinin derivatives. A series of N(6)-[(3-methylbut-2-en-1-yl)amino]purine (iP) derivatives specifically substituted at the N9 atom of purine moiety by tetrahydropyran-2-yl, ethoxyethyl, and C2-C4 alkyl chains terminated by various functional groups were prepared. The reason for this rational design was to reveal the relationship between specific substitution at the N9 atom of purine moiety of iP and cytokinin activity of the prepared compounds. The synthesis was carried out either via 6-chloro-9-substituted intermediates prepared originally from 6-chloropurine, or by a direct alkylation of N9 atom of N(6)-[(3-methylbut-2-en-1-yl)amino]purine. Selective reduction was implemented in the preparation of compound N(6)-[(3-methylbut-2-en-1-yl)amino]-9-(2-aminoethyl-amino)purine (12) when 6-[(3-methylbut-2-en-1-yl)amino]-9-(2-azidoethyl)purine (7) was reduced by zinc powder in mild conditions. The prepared derivatives were characterized by C, H, N elemental analyses, thin layer chromatography (TLC), high performance liquid chromatography (HPLC), melting point determinations (mp), CI+ mass spectral measurement (CI+ MS), and by (1)H NMR spectroscopy. Biological activity of prepared compounds was assessed in three in vitro cytokinin bioassays (tobacco callus, wheat leaf senescence, and Amaranthus bioassay). Moreover, the perception of prepared derivatives by cytokinin-sensitive receptor CRE1/AHK4 from Arabidopsis thaliana, as well as by the receptors ZmHK1 and ZmHK3a from Zea mays, was studied in a bacterial assay where the response to the cytokinin treatment could be specifically quantified with the aim to reveal the way of the perception of the above mentioned derivatives in two different plant species, that is, Arabidopsis, a model dicot, and maize, a model monocot. The majority of cytokinin derivatives were significantly active in both Amaranthus as well as in tobacco callus bioassay and almost inactive in detached wheat leaf senescence assay. N9-Substituted iP derivatives remained active in both in vitro bioassays in a broad range of concentrations despite the fact that most of the derivatives were unable to trigger the cytokinin response in CRE1/AHK4 and ZmHK1 receptors. However, several derivatives induced low but detectable cytokinin-like activation in maize ZmHK3a receptor. Compound 6-[(3-methylbut-2-en-1-yl)amino]-9-(tetrahydropyran-2-yl)purine (1) was also recognized by CRE1/AHK4 at high concentration ≥ 50 μM.  相似文献   

8.
In an attempt to improve specific biological functions of cytokinins routinely used in plant micropropagation, 33 6-benzylamino-9-tetrahydropyran-2-ylpurine (THPP) and 9-tetrahydrofuran-2-ylpurine (THFP) derivatives, with variously positioned hydroxy and methoxy functional groups on the benzyl ring, were prepared. The new derivatives were prepared by condensation of 6-chloropurine with 3,4-dihydro-2H-pyran or 2,3-dihydrofuran and then by the condensation of these intermediates with the corresponding benzylamines. The prepared compounds were characterized by elemental analyses, TLC, HPLC, melting point determinations, CI+ MS and 1H NMR spectroscopy. The cytokinin activity of all the prepared derivatives was assessed in three classical cytokinin bioassays (tobacco callus, wheat leaf senescence and Amaranthus bioassay). The derivatives 6-(3-hydroxybenzylamino)-9-tetrahydropyran-2-ylpurine (3) and 6-(3-hydroxybenzylamino)-9-tetrahydrofuran-2-ylpurine (23) were selected, because of the high affinity of their parent compound meta-topolin (mT, 6-(3-hydroxybenzylamino)purine) to cytokinin receptors, as model compounds for studying their perception by the receptors CRE1/AHK4 and AHK3 in a bacterial assay. Both receptors perceived these two derivatives less well than they perceived the parent compound. Subsequently, the susceptibility of several new derivatives to enzyme degradation by cytokinin oxidase/dehydrogenase was studied. Substitution of tetrahydropyran-2-yl (THP) at the N9 position decreased the turnover rates of all new derivatives to some extent. To provide a practical perspective, the cytotoxicity of the prepared compounds against human diploid fibroblasts (BJ) and the human cancer cell lines K-562 and MCF-7 was also assayed in vitro. The prepared compounds showed none or marginal cytotoxicity compared to the corresponding N9-ribosides. Finally, the pH stability of the two model compounds was assessed in acidic and neutral water solutions (pH 3–7) by high-performance liquid chromatography (HPLC).  相似文献   

9.
Cytokinins are a class of plant hormones that regulate the cell cycle and diverse developmental and physiological processes. Several compounds have been identified that antagonize the effects of cytokinins. Based on structural similarities and competitive inhibition, it has been assumed that these anticytokinins act through a common cellular target, namely the cytokinin receptor. Here, we examined directly the possibility that various representative classical anticytokinins inhibit the Arabidopsis cytokinin receptors CRE1/AHK4 (cytokinin response 1/Arabidopsis histidine kinase 4) and AHK3 (Arabidopsis histidine kinase 3). We show that pyrrolo[2,3-d]pyrimidine and pyrazolo[4,3-d]pyrimidine anticytokinins do not act as competitors of cytokinins at the receptor level. Flow cytometry and microscopic analyses revealed that anticytokinins inhibit the cell cycle and cause disorganization of the microtubular cytoskeleton and apoptosis. This is consistent with the hypothesis that they inhibit regulatory cyclin-dependent kinase (CDK) enzymes. Biochemical studies demonstrated inhibition by selected anti-cytokinins of both Arabidopsis and human CDKs. X-ray determination of the crystal structure of a human CDK2-anticytokinin complex demonstrated that the antagonist occupies the ATP-binding site of CDK2. Finally, treatment of human cancer cell lines with anticytokinins demonstrated their ability to kill human cells with similar effectiveness as known CDK inhibitors.  相似文献   

10.
The synthesis of a new group of 2-X-6-anilinopurines, including compounds with potential cytokinin-like activities, with various substitutions (X=H, halogen, amino, methylthio or nitro) on the phenyl ring is described. The prepared compounds have been characterized using standard physico-chemical methods, and the influence of individual substituents on biological activity has been compared in three different bioassays, based on the stimulation of tobacco callus growth, retention of chlorophyll in excised wheat leaves and the dark induction of betacyanin synthesis in Amaranthus cotyledons. The biological activity of the prepared compounds was also assessed in receptor assays, in which the ability of the compounds to activate the cytokinin receptors AHK3 and AHK4/CRE1 was studied. Finally, the interactions of the compounds with the Arabidopsis cytokinin oxidase/dehydrogenase AtCKX2 (heterologously expressed) were investigated. Systematic testing led to the identification of two very potent inhibitors of AtCKX2: 2-chloro-6-(3-methoxyphenyl)aminopurine and 2-fluoro-6-(3-methoxyphenyl)aminopurine.  相似文献   

11.
C Chen  O C Smith  J McChesney 《Biochemistry》1975,14(14):3088-3093
8-Hydroxy and 2,8-dihydroxy derivatives of the cytokinins, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)purine and N-6-(increment -2-isopentenyl)adenine, have been biosynthesized by xanthine oxidase oxidation. 8-Hydroxy derivatives have been shown to be the major intermdeiates. These compounds were tested for cytokinin activity in the tobacco bioassay. The results suggest that substitution of the 8 position with a hydroxyl group causes less decrease of cytokinin activity than substitution of both the 2 and 8 positions with hydroxyl groups.  相似文献   

12.
Strains of Escherichia coli that express two different cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, were used to study the relative sensitivity of these receptors to various cytokinins. Both receptors were most sensitive to the bases of the isoprenoid-type cytokinins trans-zeatin and isopentenyladenine but differed significantly in the recognition of other cytokinin compounds. In particular, CRE1/AHK4 recognized at 1 microm concentration only trans-zeatin while AHK3 recognized cis-zeatin and dihydrozeatin as well, although with a lower sensitivity. Similarly, CRE1/AHK4 was not activated by cytokinin ribosides and ribotides, but AHK3 was. Comparisons using the ARR5::GUS fusion gene as a cytokinin reporter in Arabidopsis showed similar relative degrees of responses in planta, except that cytokinins with aromatic side chains showed much higher activities than in the bacterial assay. These results indicate that the diverse cytokinin compounds might have specific functions in the numerous cytokinin-regulated processes, which may depend in turn on different receptors and their associated signalling pathways. The importance of precise control of local concentrations of defined cytokinin metabolites to regulate the respective downstream event is corroborated.  相似文献   

13.
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.  相似文献   

14.
Cytokinin oxidase/dehydrogenase (CKO) is a flavoenzyme, which irreversibly degrades the plant hormones cytokinins and thereby participates in their homeostasis. Several synthetic cytokinins including urea derivatives are known CKO inhibitors but structural data explaining enzyme–inhibitor interactions are lacking. Thus, an inhibitory study with numerous urea derivatives was undertaken using the maize enzyme (ZmCKO1) and the crystal structure of ZmCKO1 in a complex with N-(2-chloro-pyridin-4-yl)-N′-phenylurea (CPPU) was solved. CPPU binds in a planar conformation and competes for the same binding site with natural substrates like N6-(2-isopentenyl)adenine (iP) and zeatin (Z). Nitrogens at the urea backbone are hydrogen bonded to the putative active site base Asp169. Subsequently, site-directed mutagenesis of L492 and E381 residues involved in the inhibitor binding was performed. The crystal structures of L492A mutant in a complex with CPPU and N-(2-chloro-pyridin-4-yl)-N′-benzylurea (CPBU) were solved and confirm the importance of a stacking interaction between the 2-chloro-4-pyridinyl ring of the inhibitor and the isoalloxazine ring of the FAD cofactor. Amino derivatives like N-(2-amino-pyridin-4-yl)-N′-phenylurea (APPU) inhibited ZmCKO1 more efficiently than CPPU, as opposed to the inhibition of E381A/S mutants, emphasizing the importance of this residue for inhibitor binding. As highly specific CKO inhibitors without undesired side effects are of major interest for physiological studies, all studied compounds were further analyzed for cytokinin activity in the Amaranthus bioassay and for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4. By contrast to CPPU itself, APPU and several benzylureas bind only negligibly to the receptors and exhibit weak cytokinin activity.  相似文献   

15.
Nebularine is known for its high cytotoxicity in animals, whereas in plants it was originally believed to be an anticytokinin. In this study we show that in classical cytokinin bioassays, nebularine antagonized cytokinin function in senescence and callus biotests but not in the Amaranthus bioassay. Nebularine reversed the inhibitory effect of cytokinin on lateral root formation in Arabidopsis seedlings, and when applied alone caused increased lateral root formation and shortening of the main root. Systematic spraying of Arabidopsis plants with nebularine led to yellowing and formation of purple pigments, local drying, and withering, although younger plants showed a greater resilience. Comparison of nebularine cytotoxicity in plant and animal cells showed that the growth of tobacco BY-2 cells was inhibited with only about tenfold lower efficacy than mammalian cell lines. Most importantly, direct binding assay with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 showed that nebularine did not compete for binding with the natural cytokinin trans-zeatin. Although nebularine reduced cytokinin-induced expression of the cytokinin reporter ARR5:GUS in planta, the same effect was observed for DR5:GUS, an auxin reporter gene. Taken together, the results indicate that the mode of action of nebularine does not involve cytokinin signaling and that the anticytokinin-like effect is rather a consequence of the inhibition of various processes as described for animal systems.  相似文献   

16.
Cytokinins are phytohormones that regulate diverse developmental processes throughout the life of a plant. trans-Zeatin, kinetin, benzyladenine and dihydrozeatin are adenine-type cytokinins that are perceived by the AHK cytokinin receptors. Endogenous cytokinin levels are critical for regulating plant development. To manipulate intracellular cytokinin levels, caged cytokinins were designed on the basis of the crystal structure of the AHK4 cytokinin receptor. The caged cytokinin was photolyzed to release the cytokinin molecule inside the cells and induce cytokinin-responsive gene expression. The uncaging of intracellular caged cytokinins demonstrated that cytokinin-induced root growth inhibition can be manipulated with photo-irradiation. This caged cytokinin system could be a powerful tool for cytokinin biology.  相似文献   

17.
The cytokinin receptor AHK3 of Arabidopsis thaliana plays a predominant role in shoot development. A study of the hormone-binding characteristics of AHK3 compared with the mainly root-confined receptor CRE1/AHK4 has been accomplished using a live-cell binding assay on transgenic bacteria expressing individual receptor proteins. Both receptors bound trans-zeatin (tZ) with high affinity. Scatchard analysis showed a linear function corresponding to an apparent K(D) of 1-2 nM for the AHK3 receptor-hormone complex, which is close to the K(D) (2-4 nM) for the CRE1/AHK4 receptor-hormone complex. The specific binding of tZ to both receptors was pH dependent, AHK3 being more sensitive to pH changes than CRE1/AHK4. Hormone binding was reversible, at least for the bulk of (3)H-zeatin, and influenced by monovalent cations, while divalent cations (Ca(2+), Mg(2+), Mn(2+)) at physiological concentrations had no significant effect. AHK3 differed significantly from CRE1/AHK4 in relative affinity to some cytokinins. AHK3 had an approximately 10-fold lower affinity to isopentenyladenine (iP) and its riboside, but a higher affinity to dihydrozeatin than CRE1/AHK4. For AHK3, cytokinin ribosides (tZR, iPR) and cis-zeatin had true binding activity, although lower than that of tZ. The phenylurea-derived cytokinin thidiazuron was a strong competitor and bound to the same site as did adenine-derived cytokinins. The inhibitor of cytokinin action butan-1-ol had little effect on cytokinin-receptor complex formation. The revealed properties of AHK3 suggest its specific function in root-to-shoot communication.  相似文献   

18.
The cytokinin class of plant hormones plays key roles in regulating diverse developmental and physiological processes. Arabidopsis perceives cytokinins with three related and partially redundant receptor histidine kinases (HKs): CRE1 (the same protein as WOL and AHK4), AHK2, and AHK3 (CRE-family receptors). It is suggested that binding of cytokinins induces autophosphorylation of these HKs and subsequent transfer of the phosphoryl group to a histidine phosphotransfer protein (HPt) and then to a response regulator (RR), ultimately regulating downstream signaling events. Here we demonstrate that, in vitro and in a yeast system, CRE1 is not only a kinase that phosphorylates HPts in the presence of cytokinin but is also a phosphatase that dephosphorylates HPts in the absence of cytokinin. To explore the roles of these activities in planta, we replaced CRE1 with mutant versions of the gene or with AHK2. Replacing CRE1 with CRE1(T278I), which lacks cytokinin binding activity and is locked in the phosphatase form, decreased cytokinin sensitivity. Conversely, replacing CRE1 with AHK2, which favors kinase activity, increased cytokinin sensitivity. These results indicate that in the presence of cytokinins, cytokinin receptors feed phosphate to phosphorelay-integrating HPt proteins. In the absence of cytokinins, CRE1 removes phosphate from HPt proteins, decreasing the system phosphoload.  相似文献   

19.
Glucosides of trans-zeatin occur widely in plant tissues, formed either by O-glucosylation of the hydroxylated side chain or N-glucosylation of the purine ring structure. O-Glucosylation is stereo-specific: the O-glucosyltransferase encoded by the Phaseolus lunatus ZOG1 gene has high affinity for trans-zeatin as the substrate, whereas the enzyme encoded by the maize (Zea mays) cisZOG1 gene prefers cis-zeatin. Here we show that hydroxylated derivatives of benzyladenine (topolins) are also substrates of ZOG1 and cisZOG1. The m-OH and o-OH derivatives are the preferred substrate of ZOG1 and cisZOG1, respectively. Among the hydroxylated derivatives of thidiazuron tested, the only enzyme/substrate combination resulting in conversion was cisZOG1/(o-OH) thidiazuron. The abilities of these cytokinins to serve as substrates to the glucosyltransferases were in a large part correlated with their biological activities in the P. lunatus callus bioassay, indicating that there may be similarities between cytokinin-binding sites on the enzymes and cytokinin receptors. Further support for this interpretation is provided by cytokinin recognition studies involving the Arabidopsis (Arabidopsis thaliana) CRE1/WOL/AHK4 and maize ZmHK1 receptors. The AHK4 receptor responded to trans-zeatin and m-topolin, while the ZmHK1 receptor responded also to cis-zeatin and o-topolin. Three-dimensional molecular models of the substrates were applied to explain the results.  相似文献   

20.
The activity of cell-free preparations of dopamine--hydroxylase from a mammalian source was inhibited by a number of N6-substituted adenine derivatives that are hormonally active as cytokinins in plant systems. The synthetic cytokinin N6-cyclohexylmethyladenine exhibited inhibitory activity equivalent to that of 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTTU), a compound known to be a potent inhibitor of dopamine--hydroxylase activity. PTTU itself was found to exhibit cytokinin activity in the tobacco callus bioassay and to inhibit the activity of the plant enzyme, cytokinin oxidase. The possible significance of these observations is discussed in relation to known effects of cytokinins on phenethylamine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号