首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a rice (Oryza sativa) brassinosteroid (BR)-deficient mutant, BR-deficient dwarf2 (brd2). The brd2 locus contains a single base deletion in the coding region of Dim/dwf1, a homolog of Arabidopsis thaliana DIMINUTO/DWARF1 (DIM/DWF1). Introduction of the wild-type Dim/dwf1 gene into brd2 restored the normal phenotype. Overproduction and repression of Dim/dwf1 resulted in contrasting phenotypes, with repressors mimicking the brd2 phenotype and overproducers having large stature with increased numbers of flowers and seeds. Although brd2 contains low levels of common 6-oxo-type BRs, the severity of the brd2 phenotype is much milder than brd1 mutants and most similar to d2 and d11, which show a semidwarf phenotype at the young seedling stage. Quantitative analysis suggested that in brd2, the 24-methylene BR biosynthesis pathway is activated and the uncommon BR, dolichosterone (DS), is produced. DS enhances the rice lamina joint bending angle, rescues the brd1 dwarf phenotype, and inhibits root elongation, indicating that DS is a bioactive BR in rice. Based on these observations, we discuss an alternative BR biosynthetic pathway that produces DS when Dim/dwf1 is defective.  相似文献   

2.
Brassinazole is the only known specific brassinosteroid (BR)-biosynthesis inhibitor, and it has been shown to be useful for elucidating the function of BRs. In the course of a structure-activity relationship study of brassinazole, we found a more specific BR-biosynthesis inhibitor, Brz2001. This new inhibitor induced similar morphological changes to those seen in brassinazole-treated plants, including Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L., and Lepidium sativum L. These changes included dwarfism with altered leaf morphology, including downward curling and dark-green color, and the changes were reversed by brassinolide. Although the structure of Brz2001 is similar to that of uniconazole, a gibberellin-biosynthesis inhibitor, Brz2001-treated plants showed almost no recovery with the addition of gibberellic acid (GA3). Comparison of the responses of both brassinazole- and Brz2001-treated cress to brassinolide and GA3 suggested that Brz2001 is a more specific BR-biosynthesis inhibitor than brassinazole. Unlike the results just described, Brz2001-treated rice did not show any morphological changes. This suggests that the roles of BRs in rice may be different from those in the dicotyledonous plants examined in this study. Brz2001 can be used to clarify the function of BRs in dicots as a complement to BR-deficient mutants, and to elucidate the different roles of BRs in monocots and dicots.  相似文献   

3.
Brassinosteroids (BRs) are essential hormones for growth and development of plant. In rice, BRs regulate multiple developmental processes and affect many important traits such as height, leaf angle, fertility and seed filling. We identified brassinosteroid-regulated proteins in rice using proteomic approaches and performed functional analysis of some BR-regulated proteins by overexpression experiments. Using two-dimensional difference gel electrophoresis (2-D DIGE) followed by protein identification by mass spectrometry, we compared proteomic differences in the shoots and roots of the BR-insensitive mutant d61-4 and BR-deficient mutant brd1-3. We identified a large number of proteins differentially expressed in the mutants compared with wild type control. These include a glycine-rich RNA-binding protein (OsGRP1) and a DREPP2 protein, which showed reduced levels in the BR mutants. Overexpression of these two proteins partially suppressed the dwarf phenotype of the Arabidopsis BR-insensitive mutant bri1-5. In contrast to the reduced protein level, the RNA level of OsGRP1 was not significantly affected in the BR mutants or by BR treatment, suggesting BR regulation of OsGRP1 at the posttranslational level. This study identifies many BR-regulated proteins and demonstrates that OsGRP1 functions downstream in the BR signal transduction pathway to promote cell expansion.  相似文献   

4.
5.
Brassinosteroids promote root growth in Arabidopsis   总被引:10,自引:0,他引:10  
Müssig C  Shin GH  Altmann T 《Plant physiology》2003,133(3):1261-1271
Although brassinosteroids (BRs) are known to regulate shoot growth, their role in the regulation of root growth is less clear. We show that low concentrations of BRs such as 24-epicastasterone and 24-epibrassinolide promote root elongation in Arabidopsis wild-type plants up to 50% and in BR-deficient mutants such as dwf1-6 (cbb1) and cbb3 (which is allelic to cpd) up to 150%. The growth-stimulating effect of exogenous BRs is not reduced by the auxin transport inhibitor 2,3,5-triidobenzoic acid. BR-deficient mutants show normal gravitropism, and 2,3,5-triidobenzoic acid or higher concentrations of 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid inhibit root growth in the mutants to the same extent as in wild-type plants. Simultaneous administration of 24-epibrassinolide and 2,4-dichlorophenoxyacetic acid results in largely additive effects. Exogenous gibberellins do not promote root elongation in the BR-deficient mutants, and the sensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylic acid is not altered. Thus, the root growth-stimulating effect of BRs appears to be largely independent of auxin and gibberellin action. Furthermore, we analyzed BR interactions with other phytohormones on the gene expression level. Only a limited set of auxin- and ethylene-related genes showed altered expression levels. Genes related to other phytohormones barely showed changes, providing further evidence for an autonomous stimulatory effect of BR on root growth.  相似文献   

6.
7.
Screening for brassinosteroid (BR) biosynthesis inhibitors was performed to find chemicals that induce dwarfism in Arabidopsis, mutants that resembled BR biosynthesis mutants that can be rescued by BR. Through this screening experiment, the compound brassinazole was selected as the most potent chemical. In dark-grown Arabidopsis, brassinazole-induced morphological changes were nearly restored to those of wild type by treatment with brassinolide. The structure of brassinazole is similar to pacrobutrazol, a gibberellin biosynthesis inhibitor. However, in assays with cress (Lepidium sativum) plants, brassinazole-treated plants did not show recovery after the addition of gibberellin but showed good recovery after the addition of brassinolide. These data demonstrate that brassinazole is a specific BR biosynthesis inhibitor. Brassinazole-treated cress also showed dwarfism, with altered leaf morphology, including the downward curling and dark green color typical of Arabidopsis BR-deficient mutants, and this dwarfism was reversed by the application of 10 nM brassinolide. This result suggests that BRs are essential for plant growth, and that brassinazole can be used to clarify the function of BRs in plants as a complement to BR-deficient mutants. The brassinazole action site was also investigated by feeding BR biosynthesis intermediates to cress grown in the light.  相似文献   

8.
We have isolated a new recessive dwarf mutant of rice (Oryza sativa L. cv Nipponbare). Under normal growth conditions, the mutant has very short leaf sheaths; has short, curled, and frizzled leaf blades; has few tillers; and is sterile. Longitudinal sections of the leaf sheaths revealed that the cell length along the longitudinal axis is reduced, which explains the short leaf sheaths. Transverse sections of the leaf blades revealed enlargement of the motor cells along the dorsal-ventral axis, which explains the curled and frizzled leaf blades. In addition, the number of crown roots was smaller and the growth of branch roots was weaker than those in the wild-type plant. Because exogenously supplied brassinolide considerably restored the normal phenotypes, we designated the mutant brassinosteroid-dependent 1 (brd1). Further, under darkness, brd1 showed constitutive photomorphogenesis. Quantitative analyses of endogenous sterols and brassinosteroids (BRs) indicated that BR-6-oxidase, a BR biosynthesis enzyme, would be defective. In fact, a 0.2-kb deletion was detected in the genomic region of OsBR6ox (a rice BR-6-oxidase gene) in the brd1 mutant. These results indicate that BRs are involved in many morphological and physiological processes in rice, including the elongation and unrolling of leaves, development of tillers, skotomorphogenesis, root differentiation, and reproductive growth, and that the defect of BR-6-oxidase caused the brd1 phenotype.  相似文献   

9.
To enhance our understanding of brassinosteroid (BR) biosynthesis in rice, we attempted to identify putative rice homologs of Arabidopsis CYP90A1/ CPD and related mutants. Two candidate genes, designated CYP90A3/OsCPD1 and CYP90A4/OsCPD2, are located on chromosomes 11 (2.0 cM) and 12 (1.9 cM), respectively. Based on sequence similarity with the Arabidopsis CYP90A1/CPD gene, we predict that the CYP90A3/OsCPD1 and CYP90A4/OsCPD2 gene products function as C-23α hydroxylases in the BR biosynthesis pathway. Both are broadly expressed in wild-type rice, and their expression is regulated by a feedback mechanism. A retrotransposon insertion mutant of CYP90A3/OsCPD1, oscpd1-1, did not produce any BR-deficient phenotype or feedback upregulation of genes for BR biosynthesis enzymes. These results indicate that if, as predicted, the CYP90A3/OsCPD1 and CYP90A4/OsCPD2 genes do function in the BR biosynthesis pathway, they may each have enough capacity to catalyze BR biosynthesis on their own. As a consequence, the oscpd1-1 mutant may not be deficient in endogenous BRs. Interestingly, BR biosynthesis enzymes except C-6 oxidase are encoded by plural genes in rice but by single genes in Arabidopsis (again, except C-6 oxidase). On the basis of these findings, we discuss the differences in BR biosynthesis between rice and Arabidopsis.  相似文献   

10.
油菜素内酯生物合成途径的研究进展   总被引:1,自引:0,他引:1  
任鸿雁  王莉  马青秀  吴光 《植物学报》2015,50(6):768-778
油菜素内酯(BRs)在植物的生长发育过程中具有重要作用。该文首先综述了油菜素甾醇的结构及其生物合成途径的研究方法。之后, 介绍了其化学及生物活性的检测方法。最后, 详细介绍了BR生物合成的早期和晚期C-6氧化途径及早期C-22和C-23羟化与合成途径的调控, 并阐述了近年来植物油菜素内酯生物合成缺失突变体及其合成酶等方面的研究进 展。  相似文献   

11.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   

12.
13.
Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell spacing rule; that is, adjacent stomata are spaced by at least one intervening pavement cell. This rule is interrupted in BR-deficient and BR signaling-deficient A. thaliana mutants, resulting in clustered stomata. We demonstrate that BIN2 and its homologues, GSK3/Shaggy-like kinases involved in BR signaling, can phosphorylate the MAPK kinases MKK4 and MKK5, which are members of the MAPK module YODA-MKK4/5-MPK3/6 that controls stomata development and patterning. BIN2 phosphorylates a GSK3/Shaggy-like kinase recognition motif in MKK4, which reduces MKK4 activity against its substrate MPK6 in vitro. In vivo we show that MKK4 and MKK5 act downstream of BR signaling because their overexpression rescued stomata patterning defects in BR-deficient plants. A model is proposed in which GSK3-mediated phosphorylation of MKK4 and MKK5 enables for a dynamic integration of endogenous or environmental cues signaled by BRs into cell fate decisions governed by the YODA-MKK4/5-MPK3/6 module.  相似文献   

14.
Uncoupling brassinosteroid levels and de-etiolation in pea   总被引:14,自引:1,他引:13  
The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1 , the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.  相似文献   

15.
16.
Symons GM  Reid JB 《Plant physiology》2004,135(4):2196-2206
It is widely accepted that brassinosteroids (BRs) are important regulators of plant growth and development. However, in comparison to the other classical plant hormones, such as auxin, relatively little is known about BR transport and its potential role in the regulation of endogenous BR levels in plants. Here, we show that end-pathway BRs in pea (Pisum sativum) occur in a wide range of plant tissues, with the greatest accumulation of these substances generally occurring in the young, actively growing tissues, such as the apical bud and young internodes. However, despite the widespread distribution of BRs throughout the plant, we found no evidence of long-distance transport of these substances between different plant tissues. For instance, we show that the maintenance of steady-state BR levels in the stem does not depend on their transport from the apical bud or mature leaves. Similarly, reciprocal grafting between the wild type and the BR-deficient lkb mutants demonstrates that the maintenance of steady-state BR levels in whole shoots and roots does not depend on either basipetal or acropetal transport of BRs between these tissues. Together, with results from (3)H-BR feeding studies, these results demonstrate that BRs do not undergo long-distance transport in pea. The widespread distribution of end-pathway BRs and the absence of long-distance BR transport between different plant tissues provide significant insight into the mechanisms that regulate BR homeostasis in plants.  相似文献   

17.
18.
BIN2, a new brassinosteroid-insensitive locus in Arabidopsis   总被引:9,自引:0,他引:9  
Brassinosteroids (BRs) play important roles throughout plant development. Although many genes have been identified that are involved in BR biosynthesis, genetic approaches in Arabidopsis have led to the identification of only one gene, BRI1, that encodes a membrane receptor for BRs. To expand our knowledge of the molecular mechanism(s) of plant steroid signaling, we analyzed many dwarf and semidwarf mutants collected from our previous genetic screens and identified a semidwarf mutant that showed little response to exogenous BR treatments. Genetic analysis of the bin2 (BR-INSENSITIVE 2) mutant indicated that the BR-insensitive dwarf phenotype was due to a semidominant mutation in the BIN2 gene that mapped to the middle of chromosome IV between the markers CH42 and AG. A direct screening for similar semidwarf mutants resulted in the identification of a second allele of the BIN2 gene. Despite some novel phenotypes observed with the bin2/+ mutants, the homozygous bin2 mutants were almost identical to the well-characterized bri1 mutants that are defective in BR perception. In addition to the BR-insensitive dwarf phenotype, bin2 mutants exhibited BR insensitivity when assayed for root growth inhibition and feedback inhibition of CPD gene expression. Furthermore, bin2 mutants displayed an abscisic acid-hypersensitive phenotype that is shared by the bri1 and BR-deficient mutants. A gene dosage experiment using triploid plants suggested that the bin2 phenotypes were likely caused by either neomorphic or hypermorphic gain-of-function mutations in the BIN2 gene. Thus, the two bin2 mutations define a novel genetic locus whose gene product might play a role in BR signaling.  相似文献   

19.
We identified a short-grain mutant (Short grain1 (Sg1) Dominant) via phenotypic screening of 13,000 rice (Oryza sativa) activation-tagged lines. The causative gene, SG1, encodes a protein with unknown function that is preferentially expressed in roots and developing panicles. Overexpression of SG1 in rice produced a phenotype with short grains and dwarfing reminiscent of brassinosteroid (BR)-deficient mutants, with wide, dark-green, and erect leaves. However, the endogenous BR level in the SG1 overexpressor (SG1:OX) plants was comparable to the wild type. SG1:OX plants were insensitive to brassinolide in the lamina inclination assay. Therefore, SG1 appears to decrease responses to BRs. Despite shorter organs in the SG1:OX plants, their cell size was not decreased in the SG1:OX plants. Therefore, SG1 decreases organ elongation by decreasing cell proliferation. In contrast to the SG1:OX plants, RNA interference knockdown plants that down-regulated SG1 and a related gene, SG1-LIKE PROTEIN1, had longer grains and internodes in rachis branches than in the wild type. Taken together, these results suggest that SG1 decreases responses to BRs and elongation of organs such as seeds and the internodes of rachis branches through decreased cellular proliferation.  相似文献   

20.
Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5alpha-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号