首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We explored the role of beta-catenin in chicken skin morphogenesis. Initially beta-catenin mRNA was expressed at homogeneous levels in the epithelia over a skin appendage tract field which became transformed into a periodic pattern corresponding to individual primordia. The importance of periodic patterning was shown in scaleless mutants, in which beta-catenin was initially expressed normally, but failed to make a punctuated pattern. To test beta-catenin function, a truncated armadillo fragment was expressed in developing chicken skin from the RCAS retrovirus. This produced a variety of phenotypic changes during epithelial appendage morphogenesis. In apteric and scale-producing regions, new feather buds with normal-appearing follicle sheaths, dermal papillae, and barb ridges were induced. In feather tracts, short, wide, and curled feather buds with abnormal morphology and random orientation formed. Epidermal invaginations and placode-like structures formed in the scale epidermis. PCNA staining and the distribution of molecular markers (SHH, NCAM, Tenascin-C) were characteristic of feather buds. These results suggest that the beta-catenin pathway is involved in modulating epithelial morphogenesis and that increased beta-catenin pathway activity can increase the activity of skin appendage phenotypes. Analogies between regulated and deregulated new growths are discussed.  相似文献   

3.
Skin morphogenesis occurs in successive stages. First, the skin forms distinct regions (macropatterning). Then skin appendages with particular shapes and sizes form within each region (micropatterning). Ectopic DKK expression inhibited dermis formation in feather tracts and individual buds, implying the importance of Wnts, and prompted the assessment of individual Wnt functions at different morphogenetic levels using the feather model. Wnt 1, 3a, 5a and 11 initially were expressed moderately throughout the feather tract then were up-regulated in restricted regions following two modes: Wnt 1 and 3a became restricted to the placodal epithelium, then to the elongated distal bud epidermis; Wnt 5a and 11 intensified in the inter-tract region and interprimordia epidermis or dermis, respectively, then appeared in the elongated distal bud dermis. Their role in feather tract formation was determined using RCAS mediated misexpression in ovo at E2/E3. Their function in periodic feather patterning was examined by misexpression in vitro using reconstituted E7 skin explant cultures. Wnt 1 reduced spinal tract size, but enhanced feather primordia size. Wnt 3a increased dermal thickness, expanded the spinal tract size, reduced interbud domain spacing, and produced non-tapering "giant buds". Wnt 11 and dominant negative Wnt 1 enhanced interbud spacing, and generated thinner buds. In cultured dermal fibroblasts, Wnt 1 and 3a stimulated cell proliferation and activated the canonical beta-catenin pathway. Wnt 11 inhibited proliferation but stimulated migration. Wnt 5a and 11 triggered the JNK pathway. Thus distinctive Wnts have positive and negative roles in forming the dermis, tracts, interbud spacing and the growth and shaping of individual buds.  相似文献   

4.
Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated here for the formation of feather follicles.  相似文献   

5.
The relationships between feather morphogenesis, histogenesis, and biochemical differentiation were examined by recombining backskin epidermis and dermis, from chick embryos (Hamburger-Hamilton stages 27-31), with an intervening Nucleopore filter (pore size of 0.4 micron). The filter inhibited normal feather morphogenesis and histogenesis of barb ridges, yet feather-like filaments, which were free of dermal cells, formed from the epidermal cells. Using indirect immunofluorescence, with antiserum against alpha- and beta-keratins, the biochemical differentiation of the feather-like filaments was compared to normal feathers. In the feather-like filaments resulting from tissues of stages 27-29, cells containing beta keratins were occasionally seen at the periphery of the filaments, yet cells containing alpha-keratins were inappropriately located throughout the filaments. In a few feather-like filaments on recombinants resulting from tissues of stages 29.5-31, cells positive for beta-keratins were found in the center of the filament, but again alpha-keratins were also found. Surrounding these cells there were several layers of cells, arranged circumferentially, resembling sheath cells. Some sheath-like cells contained beta-keratins. We conclude that although feather epidermal cells, which are separated from their dermis by a Nuclepore filter, can undergo limited morphogenesis and the production of alpha- and beta-keratins, normal feather morphogenesis, histogenesis, and biochemical differentiation require the intimate associations of epidermis and dermis.  相似文献   

6.
Molecular signaling in feather morphogenesis   总被引:2,自引:0,他引:2  
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.  相似文献   

7.
The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.  相似文献   

8.
9.
The shape, distribution, and orientation of peridermal cells were examined in the dorsolumbar skin of 712-day chick embryos. Most feather rudiments of middorsal and lateral rows showed a marked cephalocaudal polarity. A similar polarity was found in the prospective rudiments of skin areas lateral to the last-formed row. On the cranial slope and apex of rudiments, cells are convex and predominantly elongated at right angles with respect to the cephalocaudal axis, whereas on the caudal slope, most cells are flat, polygonal, surrounded by a border-line ridge, and oriented predominantly with their long axis parallel to the cephalocaudal axis. The significance of this pattern is discussed in view of the fact that the epidermis is the determinant tissue in feather orientation.  相似文献   

10.
The site of the scaleless gene's activity in the development of abnormal feathers was determined by reciprocally recombining epidermis and dermis between normal and scaleless chick embryos and culturing the recombinants for seven days on the chorioallantoic membrane. When recombined with a common dermal source, feather development is enhanced by scaleless high line as compared to scaleless low line epidermis. Against a common responding tissue, 7-day normal back epidermis, significant differences were not found in feather inducing ability between normal, scaleless high line and scaleless low line dermis. It was concluded that, in relation to abnormal feathering, these tissue interactions reveal that the site of the scaleless gene's activity is the epidermis. A model of tissue interaction in the development of normal and abnormal feathers is presented. According to the model, the focus of the scaleless mutation and the genes accumulated by selection for high or low feather numbers is the epidermis, the effect being that the reactivity of the epidermis to dermal stimuli is altered. Subsequently, the epidermis controls the morphogenetic organization of the dermis. The scaleless dermis is presumed to contain normal positional information for the determination of feather structure and pattern.  相似文献   

11.
The factors that determine the axial orientation and phenotypes of skin appendages were analyzed by studying the effect of retinoic acid (RA) on embryonic chicken skin explant cultures. With RA uniformly distributed in the culture media, the feather buds became smaller, were disoriented or were transformed into scale-like structures in a concentration-dependent manner (from 0.05-2.5 microM). With RA distributed as a gradient created by a RA-soaked anion exchange bead, a radial zone of inhibition with a rim of disoriented buds was observed. The new axis of the disoriented buds appeared to be determined by a combination of the original feather axis determining force and a new axial force pointing centrifugally away from the RA source. This observed result can be simulated with a computer model using a vectorial sum of different feather axial determination forces. The size of the inhibited zone is linearly correlated to the RA concentration and may be used to quantify the morphogenetic activity of retinoids. These effects are specific to developmental stages (Hamburg and Hamilton stage 31-34). Both all-trans and 13-cis RA have morphogenetic activity. Retinol has no effect and retinal has a small inhibitory effect but neither phenotypic transformation nor axial disorientation were observed. The antero-posterior gradient of homeoprotein XlHbox 1 in feather buds became diffusive after RA treatment. RA dissolves dermal condensations and the distribution of N-CAM is altered from an anterior localized pattern to a diffusive presence in the bud cores. Endogenous retinoids in developing skins show developmental stage-dependent changes both quantitatively and qualitatively. The results suggest that RA either is or can modulate the endogenous morphogen(s) that determine the orientation and phenotype of skin appendages, and that this morphogenetic pathway involves Hox genes and adhesion molecules.  相似文献   

12.
beta-catenin signaling can initiate feather bud development.   总被引:10,自引:0,他引:10  
Intercellular signaling by a subset of Wnts is mediated by stabilization of cytoplasmic beta-catenin and its translocation to the nucleus. Immunolocalization of beta-catenin in developing chick skin reveals that this signaling pathway is active in a dynamic pattern from the earliest stages of feather bud development. Forced activation of this pathway by expression of a stabilized beta-catenin in the ectoderm results in the ectopic formation of feather buds. This construct is sufficient to induce bud formation since it does so both within presumptive feather tracts and in normally featherless regions where tract-specific signals are absent. It is also insensitive to the lateral inhibition that mediates the normal spacing of buds and can induce ectopic buds in interfollicular skin. However, additional patterning signals cooperate with this pathway to regulate gene expression within domains of stabilized beta-catenin expression. Localized activation of this pathway within the bud as it develops is required for normal morphogenesis and ectopic activation of the pathway leads to abnormally oriented buds and growths on the feather filaments. These results suggest that activation of the beta-catenin pathway initiates follicle development in embryonic skin and plays important roles in the subsequent morphogenesis of the bud.  相似文献   

13.
Keratin proteins synthesized by dorsal or tarsometatarsal embryonic chick epidermis in heterotopic and heterospecific epidermal-dermal recombinants were analyzed by polyacrylamide gel electrophoresis and were compared to those produced by normal nondissociated dorsal and tarsometatarsal embryonic skin, as well as to those produced by control homotopic recombinants. Recombinant skins were grafted on the chick chorioallantoic membrane and grown for 8 or 11 days. Recombinants comprising dorsal feather-forming dermis formed feathers, irrespective of the origin of the epidermis. The electrophoretic band patterns of the keratins extracted from these feathers were of typical feather type. Conversely recombinants comprising tarsometatarsal scale-forming dermis formed scales, irrespective of the origin of the epidermis. The band patterns of the keratins extracted from the epidermis of these scales were of typical scale type. Heterospecific recombinants comprising chick dorsal feather-forming epidermis and mouse plantar dermis gave rise to six footpads arranged in a typical mouse pattern. In these recombinants, the chick epidermis produced keratins, the band pattern of which was of typical chick scale type. These results demonstrate that the dermis not only induces the formation of cutaneous appendages in confirmity with its regional origin, but also triggers off in the epidermis the biosynthesis of either of two different keratin types, in accordance with the regional type (feather, scale, or pad) of cutaneous appendages induced. The possible relationship between region-specific morphogenesis and cytodifferentiation is discussed in comparison with results obtained in other kinds of epithelial-mesenchymal interactions.  相似文献   

14.
Chick feather buds develop sequentially in a hexagonal array. Each feather bud develops with anterior posterior polarity, which is thought to develop in response to signals derived from specialized regions of mesenchymal condensation and epithelial thickening. These developmental processes are performed by cellular mechanisms, such as cell proliferation and migration, which occur during chick feather bud development. In order to understand the mechanisms regulating the formation of mesenchymal condensation and their role in feather bud development, we explanted chick dorsal skin at stage HH29+ with cytochalasin D, which inhibits cytoskeletal formation. We show that the aggregation of mesenchymal cells can be prevented by cytochalasin D treatment in a concentration-dependent manner. Subsequently, cytochalasin D disrupts the spacing pattern and inhibits feather bud axis formation as well. In addition, expression patterns of Bmp-4 and Msx-2, key molecules for early feather bud development, were disturbed by cytochalasin D treatment. Our results fully indicate that both the cytoskeletal structure and cell activity via gene regulation are of fundamental importance in mesenchymal condensation leading to proper morphogenesis of feather bud and spacing pattern formation.  相似文献   

15.
Lorenzo Alibardi 《Protoplasma》2017,254(3):1259-1281
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3–4-nm-thick filaments through a different mechanism from that of 8–10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10–12 kDa containing 97–105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14–16 kDa made of 122–146 amino acids), claws and beak proteins (14–17 kDa proteins of 134–164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.  相似文献   

16.
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.  相似文献   

17.
The pattern of pigmentation in bird embryos is determined by the spatial organization of melanocyte differentiation. Some of the results from recent, neural crest transplantation experiments support a model based on a prepattern in the feathers; others could be interpreted in terms of a nonspecific pattern resulting from a failure of the crest cells to read the positional values in another species. To distinguish between these possibilities, the crucial test is to construct chimeras from two species with different pigment patterns. We have examined the wing plumage of quail and guinea fowl embryos. The quail has a characteristic pattern of pigmented and unpigmented feather papillae, whereas the guinea fowl shows uniform pigmentation. Chimeras were constructed by grafting wing buds isotopically between embryos. The wing buds were transplanted before they had become invaded by neural crest cells. Quail wing buds grafted to the guinea fowl developed, in most cases, a pigment pattern resembling that of the quail and not that of the guinea fowl. A few cases became uniformly pigmented and appeared to represent nonspecific patterns. The reciprocal grafts (guinea fowl wing buds grafted to the quail) became pigmented all over. We found evidence that the timing of melanocyte differentiation is controlled by cues in the feather papillae. Some cases developed a severe inflammatory response. The model which best accounts for these findings--and which can account for inconsistencies in previous reports--is the following. A prepattern is present in the feathers and this can control the differentiation of melanoblasts, even if they come from a different species. The local cues which constitute the prepattern are not positional values. In some chimeras melanoblasts fail to respond to the prepattern and so a nonspecific pattern of uniform pigmentation is produced.  相似文献   

18.
How do vertebrate epithelial appendages form from the flat epithelia? Following the formation of feather placodes, the previously radially symmetrical primordia become anterior-posterior (A-P) asymmetrical and develop a proximo-distal (P-D) axis. Analysis of the molecular heterogeneity revealed a surprising parallel of molecular profiles in the A-P feather buds and the ventral-dorsal (V-D) Drosophila appendage imaginal discs. The functional significance was tested with an in vitro feather reconstitution model. Wnt-7a expression initiated all over the feather tract epithelium, intensifying as it became restricted first to the primordia domain, then to an accentuated ring pattern within the primordia border, and finally to the posterior bud. In contrast, sonic hedgehog expression was induced later as a dot within the primordia. RCAS was used to overexpress Wnt-7a in reconstituted feather explants derived from stage 29 dorsal skin to further test its function in feather formation. Control skin formed normal elongated, slender buds with A-P orientation, but Wnt-7a overexpression led to plateau-like skin appendages lacking an A-P axis. Feathers in the Wnt-7a overexpressing skin also had inhibited elongation of the P-D axes. This was not due to a lack of cell proliferation, which actually was increased although randomly distributed. While morphogenesis was perturbed, differentiation proceeded as indicated by the formation of barb ridges. Wnt-7a buds have reduced expression of anterior (Tenascin) bud markers. Middle (Notch-1) and posterior bud markers including Delta-1 and Serrate-1 were diffusely expressed. The results showed that ectopic Wnt-7a expression enhanced properties characteristic of the middle and posterior feather buds and suggest that P-D elongation of vertebrate skin appendages requires balanced interactions between the anterior and posterior buds.  相似文献   

19.
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.  相似文献   

20.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号