首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria produce a variety of enzymes capable of methylating DNA. In many species, the majority of adenine methylation is accomplished by the DNA adenine methylase Dam. In Escherichia coli the Dam methylase plays roles in the initiation of replication, mismatch repair, and gene regulation. In a number of other bacterial species, mutation or overexpression of Dam leads to attenuation of virulence. Homologues of the dam gene exist in some members of the Firmicutes, including Streptococcus mutans, a dental pathogen. An S. mutans strain inactivated in the dam gene (SMU.504; here designated damA) was engineered, and phenotypes linked to cariogenicity were examined. A prominent observation was that the damA mutant produced greater amounts of glucan than the parental strain. Real-time PCR confirmed upregulation of gtfB. To determine whether other loci were affected by the damA mutation, a microarray analysis was carried out. Seventy genes were upregulated at least 2-fold in the damA mutant, and 33 genes were downregulated at least 2-fold. In addition to gtfB (upregulated 2.6-fold; 1.7-fold when measured by real-time PCR), other upregulated virulence factors included gbpC (upregulated 2.1-fold) and loci predicted to encode bacteriocins (upregulated 2- to 7-fold). Various sugar transport operons were also upregulated, the most extreme being the cellobiose operon (upregulated nearly 40-fold). Expression of sacB, encoding fructosyltransferase, was downregulated 2.4-fold. The sequence 5'-GATC-3' appeared to constitute the recognition sequence for methylation. These results provide evidence that DNA methylation in S. mutans has a global effect on gene expression, including that of genes associated with cariogenic potential.  相似文献   

2.
Mutants in deoxyadenosine methyltransferase (dam) from many Gram-negative pathogens suggest multiple roles for Dam methylase: directing post-replicative DNA mismatch repair to the correct strand, guiding the temporal control of DNA replication and regulating the expression of multiple genes (including virulence factors) by differential promoter methylation. Dam methylase (HI0209) in strain Rd KW20 was inactivated in Haemophilus influenzae strains Rd KW20, Strain 12 and INT-1; restriction with Dam methylation-sensitive enzymes DpnI and DpnII confirmed the absence of Dam methylation, which was restored by complementation with a single copy of dam ectopically expressed in cis. Despite the lack of increased mutation frequency, the dam mutants had a 2-aminopurine-susceptible phenotype that could be suppressed by secondary mutations in mutS, suggesting a role for Dam in H. influenzae DNA mismatch repair. Invasion of human brain microvascular endothelial cells (HBMECs) and human respiratory epithelial cells (NCI-H292) by the dam mutants was significantly attenuated in all strains, suggesting the absence of a Dam-regulated event necessary for uptake or invasion of host cells. Intracellular replication was inhibited only in the Strain 12 dam mutant, whereas in the infant rat model of infection, the INT-1 dam mutant was less virulent. Dam activity appears to be necessary for both in vitro and in vivo virulence in a strain-dependent fashion and may function as a regulator of gene expression including virulence factors.  相似文献   

3.
A gene from the periodontal organism Porphyromonas gingivalis has been identified as encoding a DNA methylase. The gene, referred to as pgiIM, has been sequenced and found to contain a reading frame of 864 basepairs. The putative amino acid sequence of the encoded methylase was 288 amino acids, and shared 47% and 31% homology with the Streptococcus pneumoniae DpnII and E. coli Dam methylases, respectively. The activity and specificity of the pgi methylase (M.PgiI) was confirmed by cloning the gene into a dam- strain of E. coli (JM110) and performing a restriction analysis on the isolated DNA with enzymes whose activities depended upon the methylation state of the DNA. The data indicated that M.PgiI, like DpnII and Dam, methylated the adenine residue within the sequence 5'-GATC-3'.  相似文献   

4.
Comparative genomic analysis has revealed limited strain diversity between Salmonella pathogenic and nonpathogenic isolates. Thus, some of the relative virulence and host-immune response disparities may be credited to differential gene regulation rather than gross differences in genomic content. Here we show that altered levels of Salmonella DNA adenine methylase (Dam) resulted in acute defects in virulence-associated gene expression, motility, flagellin synthesis, and bile resistance in the Salmonella pathogenic strain 14028 but not in avirulent laboratory strain LT2. The defects in motility exhibited by 14028 in response to altered Dam levels was not dependent on the presence of the regulatory protein, RpoS. The transitioning between flagellar types (phase variation) was also differentially regulated in 14028 versus LT2 in response to dam levels, resulting in distinct differences in flagellin expression states. These data suggest that differential gene regulation may contribute to the relative virulence disparities observed between Salmonella serovars that are closely related at the DNA level.  相似文献   

5.
6.
7.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

8.
9.
10.
Enterobacterial GATC-specific DNA adenine methyltransferase (Dam) plays an essential role in regulation of DNA replication, methyl-directed mismatch repair, transposition and gene expression. In Salmonella typhimurium it has been shown to directly control virulence. In this paper we report cloning and expression of the dam gene from the Shiga toxin-producing VT2-Sa prophage of enterohemorrhagic Escherichia coli O157. Comparisons of the predicted amino acid sequence indicates that Dam methyltransferases of E. coli phages VT2-Sa, 933W, T1 and Haemophilus influenzae phage HP1 make up a separate subgroup of adenine-N6 methyltransferases. These proteins are similar to the gamma subfamily of amino-methyltransferases in respect to the linear order of sequence motifs and the presence of the hallmark "NPPY" tetrapeptide. However, they apparently lack an autonomous target-recognizing domain at the C-terminus of the catalytic domain and therefore we propose to dub them as a "mini-gamma" subfamily.  相似文献   

11.
12.
13.
Microbial pathogens possess a repertoire of virulence determinants that each make unique contributions to fitness during infection. Analysis of these in vivo-expressed functions reveals the biology of the infection process, encompassing the bacterial infection strategies and the host ecological and environmental retaliatory strategies designed to combat them (e.g. thermal, osmotic, oxygen, nutrient and acid stress). Many of the bacterial virulence functions that contribute to a successful infection are normally only expressed during infection. A genetic approach was used to isolate mutants that ectopically expressed many of these functions in a laboratory setting. Lack of DNA adenine methylase (Dam) in Salmonella typhimurium abolishes the preferential expression of many bacterial virulence genes in host tissues. Dam- Salmonella were proficient in colonization of mucosal sites but were defective in colonization of deeper tissue sites. Additionally, Dam- mutants were totally avirulent and effective as live vaccines against murine typhoid fever. Since dam is highly conserved in many pathogenic bacteria that cause significant morbidity and mortality worldwide, Dams are potentially excellent targets for both vaccines and antimicrobials.  相似文献   

14.
15.
16.
17.
Cloning the BamHI restriction modification system.   总被引:11,自引:7,他引:4       下载免费PDF全文
BamHI, a Type II restriction modification system from Bacillus amyloliquefaciensH recognizes the sequence GGATCC. The methylase and endonuclease genes have been cloned into E. coli in separate steps; the clone is able to restrict unmodified phage. Although within the clone the methylase and endonuclease genes are present on the same pACYC184 vector, the system can be maintained in E. coli only with an additional copy of the methylase gene present on a separate vector. The initial selection for BamHI methylase activity also yielded a second BamHI methylase gene which is not homologous in DNA sequence and hybridizes to different genomic restriction fragments than does the endonuclease-linked methylase gene. Finally, the interaction of the BamHI system with the E. coli Dam and the Mcr A and B functions, have been studied and are reported here.  相似文献   

18.
19.
衣原体感染与多种慢性疾病密切相关,其主要外膜蛋白(MOMP)是一种多功能蛋白,分别与外膜结构的稳定性、生长代谢调节、抗原性和毒力密切相关。随着沙眼衣原体和肺炎衣原体基因组测序的完成,人们得以揭示其重要的生物合成、代谢途径,确定调控机制及其与致病的相关性。利用分子生物学技术在分子水平分析衣原体主要外膜蛋白的结构、抗原表位,对于免疫防御、免疫病理和免疫诊断均有重要意义。本文综述了衣原体主要外膜蛋白的分子结构、基因特性、抗原表位与应用前景。  相似文献   

20.
Zhu L  Lau GW 《PLoS pathogens》2011,7(9):e1002241
Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号