首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Recent evidence indicates that glial cell line-derived neurotrophic factor (GDNF) may influence microglial survival, proliferation, and activation, but this has not yet been tested on isolated primary microglia. We compared the effects of individual and combined application of 10 ng/ml GDNF and 1 ng/ml transforming growth factor-beta1 (TGF-beta1) on total cell number, 5-bromo-2'-deoxyuridine (BrdU) incorporation, DNA nick-end labelling (TUNEL staining), and nitrite and lactate dehydrogenase (LDH) secretion in serum-free cultures of primary rat microglia. GDNF as well as TGF-beta1 enhanced the total number of lectin-positive cells and decreased the number of TUNEL-positive nuclei, while no effect on proliferation was observed. Both factors suppressed the secretion of nitrite during the first 4 days of culturing, and GDNF but not TGF-beta1 reduced the secretion of LDH in 2-week-old cultures. These findings suggest that GDNF and TGF-beta1 support survival of primary microglia in vitro.  相似文献   

3.
Effects of representative members of the transforming growth factor-β (TGF-β) family, TGF-β1, activin A and BMP-2, on melanin content and expression of pigment-producing enzymes were examined in B16 melanoma cells. Treatment with TGF-β1 or activin A but not with BMP-2 significantly decreased melanin content and expression of Tyrosinase and Tyrp-1, suggesting an inhibitory effect of TGF-β1 and activin A on melanin synthesis. TGF-β1 completely inhibited melanin synthesis induced by α-melanin stimulating hormone (α-MSH), whereas activin A only slightly did. As compared with parental B16 cells, the inhibitory effects of TGF-β1 and activin A on melanin content were relative smaller in B16 F10 cells, a subline of B16 cells that contain more pigment. The present study indicates that in addition to TGF-β, activin negatively regulates melanogenesis in the absence of α-MSH, but that the activity in the presence of α-MSH was slightly different between TGF-β and activin.  相似文献   

4.
5.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.  相似文献   

6.
Fibrotic tissue in the liver is mainly composed of collagen. Fibronectin, which is also present in fibrotic matrices, is required for collagen matrix assembly in vitro. It also modulates the amount of growth factors and their release from the matrix. We therefore examined the effects of the absence of fibronectin on the development of fibrosis in mice.Conditional deletion of fibronectin in the liver using the Mx promoter to drive cre expression resulted in increased collagen production and hence a more pronounced fibrosis in response to dimethylnitrosamine in mice. Exclusive deletion of fibronectin in hepatocytes or normalization of circulating fibronectin in Mx-cKO mice did not affect the development of fibrosis suggesting a role for fibronectin production by other liver cell types. The boosted fibrosis in fibronectin-deficient mice was associated with enhanced stellate cell activation and proliferation, elevated concentrations of active TGF-β, and increased TGF-β-mediated signaling.In vitro experiments revealed that collagen-type-I production by fibronectin-deficient hepatic stellate cells stimulated with TGF-β was more pronounced, and was associated with augmented Smad3-mediated signaling. Interfering with TGF-β signaling using SB431542 normalized collagen-type-I production in fibronectin-deficient hepatic stellate cells. Furthermore, precoating culture plates with fibronectin, but not collagen, or providing fibronectin fibrils unable to interact with RGD binding integrins via the RGD domain significantly diminished the amount of active TGF-β in fibronectin-deficient stellate cells and normalized collagen-type-I production in response to TGF-β stimulation. Thus, excessive stellate cell activation and production of collagen results from increased active TGF-β and TGF-β signaling in the absence of fibronectin.In conclusion, our data indicate that fibronectin controls the availability of active TGF-β in the injured liver, which impacts the severity of the resulting fibrosis. We therefore propose a novel role for locally produced fibronectin in protecting the liver from an excessive TGF-β-mediated response.  相似文献   

7.
Summary A study was made of the ultrastructure of the paracervical (Frankenhäuser) ganglion of the newborn rat, using immersion fixation by glutaraldehyde (2.5%) followed by OsO4 (1%), or KMnO4 (3%) fixation. The cells containing dense—core vesicles were divided into three groups: (1) primitive sympathetic cells, (2) cells containing some dense-core vesicles 700–1100 Å in size and structurally resembling sympathetic neurons, called principal neurons, and (3) cells containing many dense-core vesicles with a larger, darker dense core, 800–2000 Å in diameter, called granule-containing cells. Using glutaraldehyde-osmium fixation, the principal neurons were further divided into dark and light cells on the basis of electron opacity of the cytoplasmic matrix. The granule-containing cells were believed to correspond to the small, intensely fluorescent cells (SIF-cells) previously described using the formaldehyde-induced fluorescence technique. On the basis of the amount of granules, the granulecontaining cells were classified as mature or maturing SIF-cells and as more primitive SIF-cells, and developing sympathicoblasts. The development of synapses in autonomic ganglia was discussed.Grant: The Finnish Medical Foundation.  相似文献   

8.
Liu Q  Zhang Y  Mao H  Chen W  Luo N  Zhou Q  Chen W  Yu X 《PloS one》2012,7(2):e32009
Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis.  相似文献   

9.
10.
Flavobacterium multivorum, a non-fermenting Gram-negative bacteria, normally produces zeaxanthin (3R, 3 R-, -carotene-3, 3 diol) as its main carotenoid. The effect of supplementation of various inorganic salts and urea on the growth, total carotenoid production, and proportion of -carotene (, -carotene), -cryptoxanthin (, -caroten-3-ol), and zeaxanthin produced by F. multivorum was investigated. Urea and several salts, such as calcium chloride, ammonium chloride, lithium chloride, and sodium carbonate, improved total carotenoid production by 1.5- to 2.0-fold. Urea and sodium carbonate had an unexpectedly strong positive effect on -carotene production at the expense of zeaxanthin formation. The effect was found to be independent of incubation time, and -carotene represented 70% (w/w) of the total carotenoid content. The cumulative effect of urea and sodium carbonate was further studied using response surface methodology. An optimum medium was found to contain 4,000 and 4,070 mg l–1 urea and sodium carbonate, respectively. The maximum -carotene level was 7.85 g ml–1 culture broth, which represented 80% (w/w) of the total carotenoid produced. Optimization resulted in 77- and 88-fold improvements in the volumetric and specific -carotene levels, respectively, accompanied by a simultaneous decrease in the zeaxanthin level as compared to the control medium. The carotenoid production profile in the optimized medium indicated that -carotene was produced maximally during the late exponential phase at 0.41 g ml–1 h–1. It is possible that this organism could be an excellent commercial source of either -carotene or zeaxanthin, depending on initial culture conditions.  相似文献   

11.
Bone repair is one of the major challenges facing reconstructive surgery. Bone regeneration is needed for the repair of large defects and fractures. The ability of TGF-β1 and IGF-1 incorporated into hydrogel scaffold to induce bone regeneration was evaluated in a rat tibia segmental defect model. External fixation was performed prior to the induction of the segmental bone defect in order to stabilize the defect site. Hydrogel scaffold containing either TGF-β, IGF-1, TGF-β + IGF-1, hydrogel containing saline or saline, were inserted in the defect. Calcified material was observed in the defects treated with TGF-β 2 weeks following the start of treatment. Bone defects treated with TGF-β, IGF-1 or TGF-β + IGF-1 revealed significant bone formation after 4 and 6 weeks when compared to the control specimens. X-ray images showed that solid bone was present at the defect site after 6 weeks of treatment with TGF-β or TGF-β + IGF-1. A less pronounced bone induction was observed in the control specimens and bones treated with IGF-1. Percent closure ratio of bone defects after 6 weeks were 40, 80, 89, and 97% for saline, hydrogel, IGF-1, TGF-β and IGF-1 + TGF-β groups, respectively. It is concluded that hydrogel scaffold can serve as a good osteoconductive matrix for growth factors, and that it provides a site for bone regeneration and enhances bone defect healing and could be used as alternative graft material. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary The cellular retinoic acid-binding proteins (CRABPs) are thought to modulate the responsiveness of cells to retinoic acid (RA). We have previously shown that primary cultures of murine embryonic palate mesenchymal (MEPM) cells express both CRABP-I and CRABP-II genes and that this expression is regulated by RA and transforming growth factor β (TGF-β). These cells also express high levels of TGF-β3, which is also regulated by RA and TGF-β. We have used an antisense strategy to investigate the role of the CRABPs in retinoid-induced gene expression. Subconfluent cultures of MEPM cells were treated for several days with phosphorothioate modified 18-mer oligonucleotides antisense to CRABP-I or CRABP-II and then with all-trans-retinoic acid at a concentration of 3.3 μM or 0.33 μM for 5 or 22 h. Total RNA was then extracted and the expression of TGF-β3, retinoic acid receptor β (RAR-β), and tenascin was assessed by northern blot analysis. Antisense oligonucleotides to CRABP-I partially inhibited the RA-induced TGF-β3, RAR-β, and tenascin mRNA expression. The corresponding mis-sense oligonucleotides were without effect. Antisense oligonucleotides to CRABP-II also partially inhibited RA-induced expression of these genes. As with the CRABP-I antisense, mis-sense oligonucleotides to CRABP-II had no effect. These data suggest that both CRABPs modulate the responsiveness of MEPM cells to retinoic acid. Inhibition of endogenous CRABP expression renders MEPM cells less responsive to RA with respect to induction of TGF-β3, RAR-β, and tenascin gene expression. These results have important implications for our understanding of the role of the CRABPs in retinoid teratology.  相似文献   

13.
Latif SA  Shen M  Ge RS  Sottas CM  Hardy MP  Morris DJ 《Steroids》2011,76(7):682-689
Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C19- and C21-11β-OH-steroids, in the presence of [3H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p < 0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM).Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP+ regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems.  相似文献   

14.
Plutonium (Pu), a key contaminant at sites associated with the manufacture of nuclear weapons and with nuclear-energy wastes, can be precipitated to “immobilized” plutonium phases in systems that promote bioreduction. Ferric iron (Fe3+) is often present in contaminated sites, and its bioreduction to ferrous iron (Fe2+) may be involved in the reduction of Pu to forms that precipitate. Alternately, Pu can be reduced directly by the bacteria. Besides Fe, contaminated sites often contain strong complexing ligands, such as nitrilotriacetic acid (NTA). We used biogeochemical modeling to interpret the experimental fate of Pu in the absence and presence of ferric iron (Fe3+) and NTA under anaerobic conditions. In all cases, Shewanella alga BrY (S. alga) reduced Pu(V)(PuO2 +) to Pu(III), and experimental evidence indicates that Pu(III) precipitated as PuPO4(am). In the absence of Fe3+ and NTA, reduction of PuO2 + was directly biotic, but modeling simulations support that PuO2 + reduction in the presence of Fe3+ and NTA was due to an abiotic stepwise reduction of PuO2 + to Pu4+, followed by reduction of Pu4+ to Pu3+, both through biogenically produced Fe2+. This means that PuO2 + reduction was slowed by first having Fe3+ reduced to Fe2+. Modeling results also show that the degree of PuPO4(am) precipitation depends on the NTA concentration. While precipitation out-competes complexation when NTA is present at the same or lower concentration than Pu, excess NTA can prevent precipitation of PuPO4(am).  相似文献   

15.
Cultured rat and bovine smooth muscle cells incorporated more 35SO4 into macromolecular glycosaminoglycans in the presence of β-d-xylosides than in their absence. More than 90% of the xyloside-initiated glycosaminoglycans were secreted rapidly into the culture medium and were more highly sulphated than glycosaminoglycans polymerized on core protein. The increased extents of sulphation were associated with increased synthesis of dermatan sulphate and a decrease in that of nitrous acid-sensitive glycosaminoglycans.  相似文献   

16.
Summary Alpha-smooth muscle actin is currently considered a marker of smooth muscle cell differentiation. However, during various physiologic and pathologic conditions, it can be expressed, sometimes only transiently, in a variety of other cell types, such as cardiac and skeletal muscle cells, as well as in nonmuscle cells. In this report, the expression of actin mRNAs in cultured rat capillary endothelial cells (RFCs) and aortic smooth muscle cells (SMCs) has been studied by Northern hybridization in two-dimensional cultures seeded on individual extracellular matrix proteins and in three-dimensional type I collagen gels. In two-dimensional cultures, in addition to cytoplasmic actin mRNAs which are normally found in endothelial cell populations, RFCs expressed α-smooth muscle (SM) actin mRNA at low levels. α-SM actin mRNA expression is dramatically enhanced by TGF-β1. In addition, double immunofluorescence staining with anti-vWF and anti-α-SM-1 (a monoclonal antibody to α-SM actin) shows that RFCs co-express the two proteins. In three dimensional cultures, RFCs still expressed vWF, but lost staining for α-SM actin, whereas α-SM actin mRNA became barely detectable. In contrast to two-dimensional cultures, the addition of TGF-β1 to the culture media did not enhance α-SM actin mRNA in three-dimensional cultures, whereas it induced rapid capillary tube formation. Actin mRNA expression was modulated in SMCs by extracellular matrix components and TGF-β1 with a pattern very different from that of RFCs. Namely, the comparison of RFCs with other cell types such as bovine aortic endothelial cells shows that co-expression of endothelial and smooth muscle cell markers is very unique to RFCs and occurs only in particular culture conditions. This could be related to the capacity of these microvascular endothelial cells to modulate their phenotype in physiologic and pathologic conditions, particularly during angiogenesis, and could reflect different embryologic origins for endothelial cell populations. Supported by a Post-Doctoral Fellowship from the Swiss National Science Foundation (OK) and grant HL-RO1-28373 (JAM) from the Department of Human Services, Public Health Service, Washington, D.C.  相似文献   

17.
Li GC  Wang DR  Chen W  Tzou DL 《Steroids》2012,77(3):185-192
Solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy has been applied to 17β-estradiol (E2) and 17α-estradiol (E2α), to analyze the steroidal ring conformations of the two isomers in the absence and presence of lipids at the atomic level. In the absence of lipid, the high-resolution (13)C NMR signals of E2 in a powdered form show only singlet patterns, suggesting a single ring conformation. In contrast, the (13)C signals of E2α reveal multiplet patterns with splittings of 20-300Hz, implying multiple ring conformations. In the presence of a mimic of the lipid environment, made by mixing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) in a molar ratio 3:1, E2 and E2α revealed multiplet patterns different from those seen in the absence of lipids, indicating that the two isomers adopt multiple conformations in the lipid environment. In this work, on the basis of chemical shift isotropy and anisotropy analysis, we demonstrated that E2 and E2α prefer to adopt multiple steroidal ring conformations in the presence of a lipid environment, distinct from that observed in solution phase and powdered form.  相似文献   

18.
Perfluorooctane acid (PFOA) is classified as a persistent organic pollutant and as an endocrine disruptor. The mechanism by which PFOA causes reduced testosterone production in males is not known. We tested our hypothesis that PFOA interferes with Leydig cell steroidogenic enzymes by measuring its effect on 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) activities in rat testis microsomes and Leydig cells. The IC50s of PFOA and mode of inhibition were assayed. PFOA inhibited microsomal 3β-HSD with an IC50 of 53.2 ± 25.9 μM and 17β-HSD3 with an IC50 17.7 ± 6.8 μM. PFOA inhibited intact Leydig cell 3β-HSD with an IC50 of 146.1 ± 0.9 μM and 17β-HSD3 with an IC50 of 194.8 ± 1.0 μM. The inhibitions of 3β-HSD and 17β-HSD3 by PFOA were competitive for the substrates. In conclusion, PFOA inhibits 3β-HSD and 17β-HSD3 in rat Leydig cells.  相似文献   

19.
Staphylococcus aureus is able to invade non-professional phagocytes by interaction of staphylococcal adhesins with extracellular proteins of mammalian cells and eventually resides in acidified phago-endosomes. Some staphylococcal strains have been shown to subsequently escape from this compartment. A functional agr quorum-sensing system is needed for phagosomal escape. However, the nature of this agr dependency as well as the toxins involved in disruption of the phagosomal membrane are unknown. Using a novel technique to detect vesicular escape of S. aureus, we identified staphylococcal virulence factors involved in phagosomal escape. Here we show that a synergistic activity of the cytolytic peptide, staphylococcal δ-toxin and the sphingomyelinase β-toxin enable the phagosomal escape of staphylococci in human epithelial as well as in endothelial cells. The agr dependency of this process can be directly explained by the location of the structural gene for δ-toxin within the agr effector RNAIII.  相似文献   

20.
Keratinocytes migrating from a wound edge or initiating malignant invasion greatly increase their expression of the basement membrane protein Laminin-322 (Lam332). In culture, keratinocytes initiate sustained directional hypermotility when plated onto an incompletely processed form of Lam332 (Lam332′) or when treated with transforming growth factor beta (TGF-β), an inducer of Lam332 expression. The development and tissue architecture of stratified squamous and prostate epithelia are very different, yet the basal cells of both express p63, α6β4 integrin, and Lam332. Keratinocytes and prostate epithelial cells grow well in nutritionally optimized culture media with pituitary extract and certain mitogens. We report that prostate epithelial cells display hypermotility responses indistinguishable from those of keratinocytes. Several culture medium variables attenuated TGF-β-induced hypermotility, including Ca++, serum, and some pituitary extract preparations, without impairing growth, TGF-β growth inhibition, or hypermotility on Lam322′. Distinct from its role as a mitogen, EGF proved to be a required cofactor for TGF-β-induced hypermotility and could not be replaced by HGF or KGF. Prostate epithelial cells have a short replicative lifespan, restricted both by p16INK4A and telomere-related mechanisms. We immortalized the normal prostate epithelial cell line HPrE-1 by transduction to express bmi1 and TERT. Prostate epithelial cells lose expression of p63, β4 integrin, and Lam332 when they transform to invasive carcinoma. In contrast, HPrE-1/bmi1/TERT cells retained expression of these proteins and normal TGF-β signaling and hypermotility for >100 doublings. Thus, keratinocytes and prostate epithelial cells possess common hypermotility and senescence mechanisms and immortalized prostate cell lines can be engineered using defined methods to yield cells retaining normal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号