首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In an attempt to test predictions of the optimisation hypothesis of life history traits in birds, we estimated fitness consequences of brood size manipulations. Experiments were carried out over a period of 4 years in a Mediterranean population of blue tits Parus caeruleus which is confronted with a particular set of environmental constraints. Effects of brood size manipulation were investigated in relation to year-to-year variation in environmental conditions, especially caterpillar abundance. There was a strong variation in the effects of brood size manipulation depending on year. Most effects were on offspring quality (fledging mass, tarsus length). The absolute number of recruits did not significantly differ among categories (reduced, control, enlarged broods) but varied considerably among years. Females recruited from enlarged broods were of lower quality, started to breed later and laid fewer eggs than those recruited from control and reduced broods. Neither parental survival nor reproductive performances of adults in year n + 1 was affected by brood size manipulation in year n. Thus there was no evidence for a cost of reproduction in this population. Since the number of recruits did not depend on brood size manipulation (recruitment rates were higher in reduced broods), but recruits from reduced broods were of better quality compared with other groups, we conclude that adults lay a clutch that is larger than that which is predicted by the optimisation hypothesis. Producing more young could incur some penalties because offspring from large broods are of lower quality and less likely to recruit in the population. Two possible reasons why decision rules in this population seem to be suboptimal are discussed. Received: 10 March 1998 / Accepted: 1 July 1998  相似文献   

3.
Capsule Daylength, rather than latitude, was found to be an important determinant of variation in clutch size.

Aims To describe the nature of spatial and temporal variation in clutch size, and explore the ecological correlates of these patterns.

Methods We tested the prediction that seasonal declines in clutch size will be greater at higher latitudes. The environmental variables focused on were the influence of daylength, plant productivity, seasonality (i.e. Ashmole's hypothesis) and physiological mechanisms that relate clutch size to ambient temperature. We used data from 1980 to 2003 on spatial variation in clutch size across Britain for single‐brooded species, in which clutch size can be taken as a measure of annual reproductive investment. We included all seven species, from five families, with sufficient data in the British Trust for Ornithology's Nest Record Scheme.

Results There are strong seasonal declines in clutch size but little evidence for latitudinal gradients in clutch size or in latitudinal gradients in the rate of seasonal clutch size decline. Of the environmental variables investigated, daylength had the most marked effect on clutch size; this was positive in diurnal species and negative in the one nocturnal species.

Conclusions Although this study was confined to a relatively small latitudinal range of 8°, we found marked latitudinal gradients in a number of factors thought to drive spatial patterns in clutch size. Moreover, such variation is of sufficient magnitude to generate spatial patterns in other ecological variables in Britain. There is thus no simple explanation for the lack of a latitudinal gradient in clutch size. The results concerning daylength indicate that the time available for foraging is an important determinant of variation in clutch size.  相似文献   

4.
JUAN JOSÉ SANZ 《Ibis》1999,141(1):100-108
Geographical trends in breeding parameters were studied in the Pied Flycatcher Ficedula hypoleuca in the western Palaearctic. Predictions arising from the hypothesis that daylength and/or energy requirements of the brood explain latitudinal clutch size variation were tested. The nestling period decreased with latitude, but nestling mass on day 13 after hatching did not show a trend with latitude. The length of the daily activity period (working day) at the time of peak brood demand showed a quadratic relationship with latitude and did not increase linearly with daylight hours. The present study supports the hypothesis that latitudinal clutch size variation is influenced by the duration of the working day and the energy requirements of the brood. The balance between the energy requirements of the brood and the parents, in relation to the duration of working day and ambient temperature, are proposed to explain the latitudinal variation in clutch size in the Pied Flycatcher.  相似文献   

5.
Summary We develop a simple model explaining clutch size behaviour ofOrellia ruficauda on its principle host in North America,Cirsium arvense. Offspring of flies feed solely on thistle seeds and seed production is pollen-limited. Thus, female flies risk reduced offspring fitness when committing large clutches to hosts (female flower heads) occurring in localities where male plants are locally absent. We therefore predict that attacked hosts will contain fewer eggs in such localities, a prediction that is consistent with data obtained in the field: large clutches are never laid in flower heads in low-pollination localities. However, larvae reared from such low-quality hosts are significantly smaller on average and will therefore carry smaller egg loads as adults. Small clutches in poor-quality hosts may thus be an expression of lower per-adult fecundity. Nevertheless, sufficient numbers of large, fecund flies are produced in low-pollination localities to make this last explanation less convincing.  相似文献   

6.
We examined the effect of natural clutch size on the cost of incubation in a population of common eiders Somateria mollissima nesting in Tromsø, northern Norway. The body condition of females at day 5 in the incubation period was not related to clutch size (3–6 eggs), but females incubating large clutches lost more mass and had a lower body condition at day 20 in the incubation period than females incubating small clutches. Females incubating large clutches had a slightly shorter incubation period and a lower egg predation rate. The results do not support the hypothesis that the female's ability to produce eggs is the only ultimate control of clutch size in eider. Instead the results suggest that there may be an interaction between the allocation of body reserves to eggs and incubation, and that females producing large clutches allocate more of their body reserves to incubation than females producing small clutches, in order to shorten the incubation period and to minimise the risk of predation on eggs.  相似文献   

7.
To investigate laying decision and clutch size determination in indeterminate layers, we analysed in-nest activity (nest presence, and copulation, prey deliveries, and entrance frequencies) and female body mass change, as well as their relation to clutch size variation in five Barn Owl pairs (Tyto alba) nesting in eastern France. Body mass of the female and behaviour [copulation frequency, entrance frequency, and prey delivery to the nest by the male (in number and mass)] were monitored using an automated weighing system and a video camera. There was a consistent change of behaviour and foraging activity among pairs ca. 18 days before laying indicating that the females may be tied to the nest at this time. Barn Owls being indeterminate layers have their clutch size determined at the oviposition of the first egg of the clutch. Window correlation analyses between the clutch size and the female body mass gain indicate that the clutch size might be determined no later than a few days before the laying of the first egg. Our results suggest that female Barn Owls may use the pre-laying period to determine the clutch size using cues such as the male food deliveries (a proxy for male quality).  相似文献   

8.
Birds display a latitudinal gradient in clutch size with smaller clutches in the tropics and larger in the temperate region. Three factors have been proposed to affect this pattern: seasonality of resources (SR), nest predation and length of the breeding season (LBS). Here, we test the importance of these factors by modelling clutch size evolution within bird populations under different environmental settings. We use an individual‐based ecogenetic simulation model that combines principles from population ecology and life history theory. Results suggest that increasing SR from the tropics to the poles by itself or in combination with a decreasing predation rate and LBS can generate the latitudinal gradient in clutch size. Annual fecundity increases and annual adult survival rate decreases from the tropics to the poles. We further show that the annual number of breeding attempts that (together with clutch size) determines total annual egg production is an important trait to understand latitudinal patterns in these life history characteristics. Field experiments that manipulate environmental factors have to record effects not only on clutch size, but also on annual number of breeding attempts. We use our model to predict the outcome of such experiments under different environmental settings.  相似文献   

9.
The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One hypothesis explaining this difference is that migrants are less able to predict the final competitor density, because new pairs are still settling when the first females start laying eggs. Such unpredictability is only a problem for early laying females. If this explanation is true, the commonly observed negative correlation between clutch size and laying date should be stronger in high-density years. I tested this prediction in three populations of Pied Flycatcher Ficedula hypoleuca , and compared the results with three populations of Great Tit Parus major . In none of the six populations was there a significant correlation between the strength of the seasonal decline in clutch size and population density. Thus the lack of density dependence of clutch size in Pied Flycatchers was not consistent with the idea that this is caused by the unpredictability of final density at the time of egg-laying of the earliest females in the population. Furthermore, density does not have any adverse effect on reproductive output of Pied Flycatchers, and therefore they do not adjust clutch size to density.  相似文献   

10.
In migrating cells, with especial prominence in lamellipodial protrusions at the cell front, highly dynamic connections are formed between the actin cytoskeleton and the extracellular matrix through linkages of integrin adhesion receptors to actin filaments via complexes of cytosolic “connector” proteins. Myosin-mediated contractile forces strongly influence the dynamic behavior of these adhesion complexes, apparently in two counter-acting ways: negatively as the cell-generated forces enhance complex dissociation, and at the same time positively as force-induced signaling can lead to strengthening of the linkage complexes. The net balance arising from this dynamic interplay is challenging to ascertain a priori, rendering experimental studies difficult to interpret and molecular manipulations of cell and/or environment difficult to predict. We have constructed a kinetics-based model governing the dynamic behavior of this system. We obtained ranges of parameter value sets yielding behavior consistent with that observed experimentally for 3T3 cells and for CHO cells, respectively. Model simulations are able to produce results for the effects of paxillin mutations on the turnover rate of actin/integrin linkages in CHO cells, which are consistent with recent literature reports. Overall, although this current model is quite simple it provides a useful foundation for more detailed models extending upon it.Key words: cell migration, cytoskeleton, contractile force, paxillin  相似文献   

11.
Does size matter?   总被引:1,自引:0,他引:1  
For 40 years, the debate has raged. Do mammalian cells monitor cell size when deciding whether to divide? More recent models suggest an indirect solution, but the field is far from reaching a final verdict.  相似文献   

12.
13.
Copepods are known as important consumers of primary production and are eaten by larger animals. They therefore form a main link to higher trophic levels. While feeding pathways and specificity of planktonic copepods have been well studied, the selectivity of the benthic harpacticoid copepods is far less documented. A better knowledge of the functional ecology of harpacticoids as important grazers on primary producers may have consequences for the re-evaluation of basic energy flow in benthic ecosystems.We tested whether size selectivity for diatoms exists in harpacticoid copepods. We hypothesized that size selectivity of harpacticoid copepod species is strongly related to body size. Because of morphological constraints, we expected smaller copepods to prefer smaller diatoms while larger copepods should be able to consume both small and large diatoms. We tested this hypothesis in four harpacticoid copepod species of varied body size: Tigriopus brevicornis, Harpacticus obscurus, Amphiascus minutus and Paramphiascella fulvofasciata. As food source we used two 13C labelled strains of the benthic diatom Seminavis robusta with a four-fold difference in cell biovolume.Three out of four harpacticoid species showed size selectivity: H. obscurus and A. minutus preferred the larger Seminavis cells, while P. fulvofasciata selected the smaller Seminavis cells. Based on monoclonal treatments, there was no clear preference found for T. brevicornis although there was a small preference for large cells in the mixed treatments. Except for P. fulvofasciata, all species showed a lower uptake when offered the mixed diet (both small and large cells). Although most species showed a size selectivity, our results suggest that this selectivity was not related to their body size. However, the only species that ate significantly more of small diatoms was characterised by comparatively small mouthparts in relation to its body size.  相似文献   

14.
Capsule Some males brought building materials to nests and females who were paired with such males laid heavier clutches.  相似文献   

15.
16.
Walz  N.  Sarma  S. S. S.  Benker  U. 《Hydrobiologia》1995,313(1):165-170
Egg sizes and body sizes of 43 egg-bearing rotifer species of numerous, mostly tropical, general have been recorded. Larger absolute egg volumes have been found for larger rotifer species, but the increase was lower than expected in proportion to body size, i.e. the relative egg volume decreased with increasing body size. Obviously the relative investment per offspring is smaller in larger rotifer species.  相似文献   

17.
It has been suggested that the number of myonuclei in a muscle fibre changes in proportion to the change in fibre size, resulting in a constant myonuclear domain size, defined as the cytoplasmic volume per myonucleus. The myonuclear domain size varies, however, between fibre types and is inversely related with the oxidative capacity of a fibre. Overall, the observations of an increase in myonuclear domain size during both maturational growth and overload-induced hypertrophy, and the decrease in myonuclear domain size during disuse- and ageing-associated muscle atrophy suggest that the concept of a constant myonuclear domain size needs to be treated cautiously. It also suggests that only when the myonuclear domain size exceeds a certain threshold during growth or overload-induced hypertrophy acquisition of new myonuclei is required for further fibre hypertrophy.  相似文献   

18.
Most recent papers avoid describing macroecological relationships and interpreting then without a previous control of non-independence in data caused by phylogenetic patterns in data. In this paper, we analyzed the geographic range size – body size relationship for 70 species of New World terrestrial Carnivora (fissipeds) using various phylogenetic comparative methods and simulation procedures to assess their statistical performance. Autocorrelation analyses suggested a strong phylogenetic pattern for body size, but not for geographic range size. The correlation between the two traits was estimated using standard Pearson correlation across species (TIPS) and four different comparative methods: Felsenstein's independent contrasts (PIC), autoregressive method (ARM), phylogenetic eigenvector regression (PVR) and phylogenetic generalized least-squares (PGLS). The correlation between the two variables was significant for all methods, except PIC, in such a way that ecological mechanisms (i.e., minimum viable population or environmental heterogeneity- physiological homeostasis), could be valid explanations for the relationship. Simulations using different O-U processes for each trait were run in order to estimate true Type I errors of each method. Type I errors at 5% were similar for all phylogenetic methods (always lower than 8%), but equal to 13.1% for TIPS. PIC usually performs better than all other methods under Brownian motion evolution, but not in this case using a more complex combination of evolutionary models. So, recent claims that using independent contrasts in ecological research can be too conservative are correct but, on the other hand, using simple across-species correlation is too liberal even under the more complex evolutionary models exhibited by the traits analyzed here.  相似文献   

19.
Very little is known about how the size of an organism, or a specific tissue in an organism, is regulated. Coordinating and regulating the size of tissues is necessary for proper development, wound healing, and regeneration. Defects in a tissue-size regulation mechanism could lead to birth defects or cancer. In addition, there is a strong psychological aspect to some areas of tissue size regulation, as many cosmetic surgery procedures involve enlarging or reducing the size of some body parts. This review addresses the little bit that we know about size regulation. A key concept is that the size of a tissue is the size of the component cells multiplied by the number of those cells. This breaks the size regulation problem down to two parts. The size of cells can be regulated by nutrient sensing and secreted factors, and may have an upper limit due to an upper limit of a genome's ability to produce mRNA's and thus proteins. To regulate the number of cells in a tissue, there are several simple theoretical models involving secreted factors. In one case, the cells can secrete a characteristic factor and the concentration of the factor will increase with the number of cells secreting it, allowing the tissue to sense its own size. In another scenario, a specific cell secretes a limited amount of a factor necessary for the survival of a target population, and this then limits the size of the target population. There are currently several examples of secreted factors that regulate tissue size, including myostatin, which regulates the amount of muscles, leptin, which regulates adipose tissue, and growth hormone and insulin-like growth factors which regulate total mass. In addition, there are factors such as the found in Dictyostelium that regulate the breakup of a tissue into sub-groups. A better understanding of how these factors regulate size will hopefully allow us to develop new therapeutic procedures to treat birth defects or diseases that affect tissue size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号