首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Epithelial-cell function requires cellular polarity in which apical membrane surfaces have unique characteristics and cellular organelles are stratified. Physiological investigations of endometrial, epithelial cells would be enhanced greatly by the ability of a method to polarize cells in culture. This study investigates the effects of different substrata on polarization of cultured bovine endometrial epithelial cells. Fetal bovine endometrial epithelial-cell lines were developed from explant outgrowth. Epithelial monolayers were subcultured onto amniotic membranes, Millicell-HA membranes, or Millicell-CM membranes coated with rat-tail collagen, Matrigel, laminin, Vitrogen,or fibronectin. Cultures on these substrata were maintained at the air/liquid interface. Cells grown on either collagen-coated or uncoated Milli-cell membranes also were maintained submerged in medium. Excellent polarized morphology was attained in cultures grown at the air/liquid interface on amniotic membranes and rat-tail collagen-coated membranes. Lectin-binding patterns, to apical membranes of polarized epithelial cell cultures paralleled patterns of binding to bovine endometrial surfaces in vivo. Cultures on rat-tail collagen were maintained for several weeks. These methods provide a valuable system for studying the endometrium in vitro.  相似文献   

2.
Summary Collagen, a major component of the extracellular matrix, is important in maintaining the in vivo characteristics of epidermal cells in vitro. In the present study, the morphological and proliferative characteristics of two human mammary epithelial cell lines (T-47D and MCF-7) cultured in cowhide collagen (Vitrogen 100) were studied. When grown in collagen, the tumor cells displayed a spherical shape and formed multilayered, tumorlike aggregates; desmosomes were observed between cells. In contrast, both cell lines grew as monolayers on plastic substratum; cells were characteristically flat and polygonal. When grown in collagen matrix, the human breast cancer cells became more dependent on serum for growth: cells proliferated in the presence of 10% fetal bovine serum (FBS) but failed to grow in 1% serum. On the other hand, these cells proliferated rapidly in 1% serum when they were grown on plastic. Even in 10% serum the doubling time of cells cultured in collagen was longer than that of cells maintained on plastic. In addition, cells cultured in collagen proliferated rapidly in a serum-free medium containing insulin, epidermal growth factor (EGF), estrogen, and transferrin. The collagen gel system may be useful for characterizing physiologically important trophic factors that regulate the proliferation and other functions of human breast tumor cells. The advice of Drs. J. A. Paterson and B. Dronzek in the electron microscopy studies is appreciated. This research was supported by the Medical Research Council of Canada. Clement K. H. Leung was supported by a University of Manitoba graduate fellowship. Portions of this work were reported at the Twentieth Annual Meeting of the American Society for Cell Biology held in Cincinnati, Ohio, November 14–18, 1980.  相似文献   

3.
The aim of this study was to determine the role of ECM components of bone in regulating the differentiation and function of cells of the osteoblast lineage. Rat UMR 201 cells, phenotypically preosteoblast, were plated onto plastic tissue culture dishes or dishes coated with gelled type I collagen or reconstituted basement membrane (matrigel). Acute cell attachment assays showed that cells adhered to substrates in the following order: collagen > matrigel ? plastic. Proliferation rate up to 96 hr were similar on each substrate. However, if cells were treated with 10?6 M retinoic acid (RA), proliferation rates were reduced compared with control for cells grown on collagen and matrigel but not on plastic. Morphological changes were matrix-specific; in subconfluent cultures, long thin processes were seen with cells grown on collagen and a pattern of interconnecting cell processes formed when cells were plated on matrigel. Striking differences were observed in the constitutive or RA-induced gene expression of cells grown on the different substrates. When cells plated on collagen were treated with RA, induction of mRNA for alkaline phosphatase (ALP) as well as ALP enzyme activity were much less than with cells grown on plastic. In contrast, RA treatment induced osteopontin (OP) mRNA expression more strongly in cells plated on collagen compared with plastic within 24 hr and this was maintained for 72 hr. RA treatment produced a two fold increase of pro-α 1(I) collagen mRNA in cells grown on plastic and matrigel but not in cells grown on collagen. Growth on collagen produced changes in the way UMR 201 cells responded to RA from which they did not fully recover in subsequent 48-hr growth periods on plastic. These results indicate that ECM components regulate the function of and are capable of modulating RA-induced differentiation of preosteoblasts. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The effect of human fetal fibroblasts and adult keratinocytes on collagen contraction was studied. Keratinocytes embedded in collagen lattices did not spread and produced only a slight contraction. When keratinocytes were seeded on the surface of tht gel, the contraction began within 24 h and correlated with the formation of epithelial colonies. Transplantation of multilayered epithelial sheets on the gel significantly accelerated the onset of contraction. Keratinocytes seeded on and fibroblasts grown in collagen lattices cooperatively contracted the gel, and keratinocytes were able to stimulate gel contraction even when they had no contact with the collagen roughly populated with fibroblasts. Swiss 3T3 cells remained spherical in collagen lattices and did not contract the gel but when cultivated with keratinocytes they stimulated gel contraction. In their turn, keratinocytes influenced the behaviour of Swiss 3T3 cells which elongated and produced processes. We suggest that both keratinocytes and mesenchymal cells can affect gel contraction 1) by a direct contact with collagen lattices, and 2) through potentiation of the ability of another cell type to contract the gel.  相似文献   

5.
Cells of the human keratinocyte line HaCaT were shifted to a mesenchymal/myogenic phenotype (DTHMZ cells) by MyoD1 transfection, 5- aza-2'' deoxycytidine treatment, and selection for reduced adhesion on plastic. Since this correlated with loss of stratification (inability to form a multilayered tissue), we determined the status of cell-cell and cell-matrix adhesion molecules involved in epidermal morphogenesis. Expression of desmosomal proteins (plakoglobin, desmoglein, desmoplakin) and uvomorulin was no longer detectable at the mRNA and protein level in the DTHMZ cells while both HaCaT cells and malignant variants (transfected with c-Ha-ras oncogene) expressed uvomorulin in vitro and in transplants in vivo, the latter even in invasively growing tumor nodules. Furthermore, HaCaT cells stained positive for the integrin subunits beta 1, alpha 2, alpha 3, and alpha 5, typical for cultured keratinocytes. In contrast, the putative fibronectin receptor alpha 5 beta 1, common also in fibroblasts, was the only integrin showing strong staining in DTHMZ cells. The integrin subunits alpha v and a6, clearly expressed at the mRNA level, weakly stained HaCaT cultures and led to a dotlike fluorescence in DTHMZ cells, possibly representing focal adhesion plaques. The respective integrin status correlated well with the growth behavior on different matrices. While HaCaT cells readily attached and proliferated on collagen (type I), fibronectin-coated, and laminin-coated collagen gels, DTHMZ cells formed monolayers only on fibronectin-coated collagen. This was, however, not sufficient to allow stratification in vivo. Altogether, the status of adhesion molecules in DTHMZ cells more likely reflects that seen in mesenchymal cells as compared to the pattern of keratinocytes displayed by HaCaT cells. Moreover, since the DTHMZ cells were clearly HaCaT descendants, the results support our hypothesis of a "trans-differentiation" process from an epidermal (HaCaT) to a mesenchymal/myogenic phenotype (DTHMZ).  相似文献   

6.
This paper describes the interaction observed between human keratinocytes and xenogenic collagen in vitro modified by HCl. Human keratinocytes were cultivated for 3–10 days, on modified and control support. Their growth, morphology and interaction with support were analyzed. It was found that on both control and experimental (modified) collagen cells proliferated in a similar way. Within 3–10 days, the culture became multilayered and mature and differentiation of cells was visible. Using electron microscope elements of basal membrane interacting with support were seen. On modified support processes of cells penetrating the support are occasionally seen. By use of the immunofluorescent, cytochemical techniques was found the presence of: BP-180 (antigen), β4 integrin, laminin 5 and collagen IV, VII, VIIc. On the modified support the above listed elements appeared between 3 and 7 days of culture, whereas on the control between 7th and 10th days. On 10th day of culture, the presence of elements of basal membranes became less evident. Results give some hope for using xenogenic, modified collagen as support of keratinocytes culture in process of human skin engineering.  相似文献   

7.
Summary Many studies have shown that human gingival keratinocytes grown in submerged culture fail to attain optimal differentiation. This study reports an in vitro culture system for oral gingival epithelial cells, in which they are grown at the air-liquid interface, on polycarbonate inserts, in the presence of an NIH-3T3 feeder layer. This model was compared with two submerged culture methods for gingival keratinocytes, on type I collagen gel and on an NIH-3T3 feeder layer. Transmission electron microscopy showed an advanced level of stratification (over six layers of cells) for cultures grown at the air-liquid interface. Immunofluorescence and electrophoretic patterns showed the presence of cytokeratins 10 and 11 in cytoskeletal protein extracts of these cultured keratinocytes. In this air-liquid interface culture model, in the presence of NIH-3T3 feeder cells, keratinocytes can achieve an advanced level of stratification and differentiation and a resemblance to in vivo gingiva. The obtention of a highly differentiated epithelium will permit in vitro pharmacological studies and studies on the biocompatability of certain alloys with the superficial periodontium; it will also provide grafts for patients undergoing periodontal surgery.  相似文献   

8.
A mouse mammary epithelial cell line (NMuMG), after transfection with the c-rasH oncogene, forms invasive tumors in nude mice. NMuMG and NMuMG/p-rasH cells produce similar amounts of collagen (mostly type IV) when grown on plastic. NMuMG cells respond to growth on collagen gels by increasing the rate of collagen synthesis and deposition by 100%, unlike NMuMG/p-rasH cells which synthesize similar amounts of collagen whether grown on plastic or collagen gels. These results suggest that ras transformation partially inhibits the interaction between epithelial cells and the surrounding stroma that is necessary for basement membrane deposition in vivo and consequently may facilitate the invasion of the stroma by transfected cells.  相似文献   

9.
Summary When multiple types of cells from normal and diseased human skin are required, techniques to isolate cells from small skin biopsies would facilitate experimental studies. The purpose of this investigation was to develop a method for the isolation and propagation of three major cell types (keratinocytes, microvascular endothelial cells, and fibroblasts) from a 4-mm punch biopsy of human skin. To isolate and propagate keratinocytes from a punch biopsy, the epidermis was separated from the dermis by treatment with dispase. Keratinocytes were dissociated from the epidermis by trypsin and plated on a collagen-coated tissue culture petri dish. A combination of two commercial media (Serum-Free Medium and Medium 154) provided optimal growth conditions. To isolate and propagate microvascular endothelial cells from the dermis, cells were released following dispase incubation and plated on a gelatin-coated tissue culture dish. Supplementation of a standard growth medium with a medium conditioned by mouse 3T3 cells was required for the establishment and growth of these cells. Epithelioid endothelial cells were separated from spindle-shaped endothelial cells and from dendritic cells by selective attachment toUlex europeus agglutinin I-coated paramagnetic beads. To establish fibroblasts, dermal explants depleted of keratinocytes and endothelial cells were attached to plastic by centrifugation, and fibroblasts were obtained by explant culture and grown in Dulbecco’s modified Eagle’s medium (DMEM) containing fetal bovine serum (FBS). Using these isolation methods and growth conditions, two confluent T-75 flasks of keratinocytes, one confluent T-25 flask of purified endothelial cells, and one confluent T-25 flask of fibroblasts could be routinely obtained from a 4-mm punch biopsy of human skin. This method should prove useful in studies of human skin where three cell types must be grown in sufficient quantities for molecular and biochemical analysis.  相似文献   

10.
Substrata upon which epithelial cells are cultured modulate their morphology,growth, and ability to differentiate. Mouse mammary epithelial cells cannot be induced to synthesize caseins, a marker of cell differentiation, when grown on a plastic surface. An analysis was made of the effect of time within a collagen matrix on the ability of normal mammary epithelial cells to be induced to synthesize caseins and that response was compared to mammary gland development in vivo. Primary cultures of mammary cells from unprimed virgin BALB/c mice were embedded in rat-tail collagen gel mixtures and maintained in growth medium. Induction medium containing lactogenic hormones was added at various times. The cells were monitored every 3-7 days over a period of 8 weeks for cell growth, casein synthesis, and ability to grow in vivo in cleared mammary fat pads. Casein accumulation was assayed quantitatively by an ELISA competition assay and qualitatively by the immunoblot procedure using specific antisera prepared against purified mouse caseins. No marked differences in cell numbers and transplantability potential were observed among cells cultured for various times in collagen. Mammary cells grown in collagen for up to 8 weeks retained the capacity to grow in vivo as normal ductal outgrowths. The duration of culture within collagen prior to hormonal stimulation did influence the kinetics of casein synthesis. Cells cultured for 1 week in growth medium did not accumulate detectable levels of casein until after 3 weeks of induction, whereas cells cultured for 2 or 4 weeks responded by accumulating caseins after 2 weeks and 3 days of induction, respectively. While the levels of total caseins that accumulated under optimal conditions of induction in culture approached levels found during lactation in vivo, the relative proportion of specific casein polypeptides synthesized in culture was altered from alpha casein (43K) in favor of the beta casein (30K) species. These results suggest that a period of culture within collagen is required to permit mammary epithelial cells to become responsive for hormone-induced differentiation. It is possible that during growth within the collagen the cells synthesize and deposit extracellular matrix components important in modulating gene expression.  相似文献   

11.
Multiple molecular forms of plasminogen activator were detected in normal human mammary epithelial cells in culture. Cells derived from (normal) breast mammoplasty specimens and grown on the surface of collagen gels exhibited three major classes of plasminogen activator isozymes (Mr = 100,000 [100K], 75,000 [75K], and 55,000 [55K]). The activity of the 100K and 75K isozymes was greatly reduced when the cells were grown on conventional tissue-culture-grade plastic surfaces. MCF-7, a human mammary carcinoma cell line, exhibited predominantly or exclusively the 55K isozyme, irrespective of the cell growth substratum. The activity of the 55K isozyme was more than twofold higher for MCF-7 cells grown on collagen gels than for cells grown on plastic. Progesterone, diethylstilbestrol, and estrogen stimulated the activity of the 55K isozyme of MCF-7 cells, but only when the cells were grown on a plastic surface. The plasminogen activator activities of the normal human mammary epithelial cells were not stimulated by these hormones, irrespective of the growth substratum. These results show that the expression of plasminogen activator isozymes by human mammary epithelial cells is subject to modulation by the extracellular matrix. Normal and malignant cells may differ in their responsiveness to these effects.  相似文献   

12.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

13.
Summary Epithelial cells were isolated from mouse endometrium and cultured on two types of extracellular matrix, namely, rat-tail collagen (type I) gels and basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm murine sarcoma. Cell attachment in serum-free medium during the initial 24 h after seeding was approximately twofold higher on BME compared with collagen type I. Addition of serum to the medium enhanced cell attachment on both matrices. On both collagen and BME, uterine cells grew as smooth-bordered colonies, and within a week of culture the cells became cuboidal to columnar in shape. Electron microscopy revealed the presence of apical microvilli associated with a glycocalyx, junctional complexes, tonofilaments, short strands of undilated endoplasmic reticulum, Golgi complex, and lipid droplets. However, cells on BME showed a higher degree of differentiation as assessed by occasional formation of small patches of basement membranelike structure subjacent to the flattened basal surface and formation of glandlike structures within the matrix. Proliferation of these cells as measured by radioactive thymidine incorporation into DNA was increased threefold by addition of epidermal growth factor (EGF) and insulin to the medium, but was not changed by 17β-estradiol. The expression of progesterone receptors by uterine epithelial cells grown on both matrices was doubled by addition of EGF and estradiol to the medium. This work was supported in part by a Rockefeller Foundation postdoctoral fellowship (D.G.), and NIh grant 23511.  相似文献   

14.
Summary Many of the morphologic and biochemical changes that occur during human fetal skin development have been described, yet there has been little experimental analysis of the processes that regulate the development of human fetal skin. This is due in part to difficulties in culturing human fetal epidermal keratinocytes. We have successfully cultured fetal keratinocytes in two different in vitro systems; in a serum-free keratinocyte growth medium (KGM) on tissue culture plastic and cocultured with dermal fibroblasts as spheroidal aggregates. To characterize these fetal keratinocytes in vitro we have assessed their ability to express several markers of epidermal differentiation. Human fetal keratinocytes grown on plastic in KGM stratify and express some of the components of the differentiated epidermis, such as involucrin and the high molecular weight keratins. However, these keratinocytes co-express keratins and vimentin and do not form a structured basement membrane. More characteristics of fetal skin are preserved in mixed aggregates of epidermal keratinocytes and dermal fibroblasts including epidermal stratification, synthesis of basement membrane components, tissue-specific expression of intermediate filaments, involucrin, and expression of high molecular weight keratins. The maintenance of human fetal epidermal keratinocytes in these two in vitro systems and their ability to express many differentiated characteristics suggests that these cultures will be valuable for studies of the molecular mechanisms that regulate the regionally specific differentiation of the human fetal epidermis. This work was supported by the Dermatology Foundation Fellowships funded by Herbert Laboratories and The Upjohn Company and awarded to A. R. H., NIH Training Program in Dermatological Research #5T32AR07472, and NIH grant #5R01HD20996 to A. T. L. Publication no. 74 of the Dermatology Department, University of Rochester, Rochester, NY.  相似文献   

15.
Cultured bovine corneal endothelial cells can be grown in three ways: on plastic, on plastic with fibroblast growth factor present in the media, and on their own preformed extracellular matrix. On plastic alone, cells grow in a disorderly fashion and secrete matrix on all cell surfaces. Cells grown on plastic with growth factor or on a matrix, at confluence, have matrix deposition only on the basal surface of the cells and an orderly contact-inhibited pattern of growth. This correlates with the polarity they demonstrate histologically. This cell-matrix pattern resembles the pattern observed in vivo. Both the soluble growth factor and the extracellular matrix are able to modulate the pattern of collagen synthesis and deposition by cells, but they do so in two entirely different ways. In cells grown on the extracellular matrix, total collagen synthesis is lower but more efficient. Collagen is deposited primarily into the cell layer even at the early sparse stage of culture. In cells grown on plastic with growth factor in the media, collagen is initially secreted into the media and does not become incorporated into the matrix. The deposition of collagen on the basal surface of cell occurs only late in the culture, and is achieved by increments in a stepwise manner. The in vivo-like pattern is not manifest until confluence has been reached. Thus, the extracellular matrix functions not only as a structural support, but is also instructional to the cells plated on it. In this case, the matrix regulates the level of collagen synthesis in the cells and modulates the pattern of collagen deposition. Soluble growth factors may act in part by enhancing a cell's ability to elaborate an appropriate matrix pattern necessary for the cell's own growth and accurate function.  相似文献   

16.
Summary Select medium and substratum conditions were investigated for their effects on semiconservative DNA synthesis in essentially pure primary cultures of bile ductular epithelial cells that were initially isolated from cholestatic rat livers at 6 to 10 wk after bile duct ligation. DNA synthesis in these cultured cells was serum-dependent, being at its highest level when the concentration of fetal bovine serum present in the medium was maintained at 10%. This serum-dependent DNA synthesis was completely inhibited when 10 mM hydroxyurea was also included in the medium, and bile ductular cells cultured in the continued presence of 1.0% fetal bovine serum showed only marginal DNA synthesis during 8 to 10 d of primary culture when compared with no-serum controls. Maximum rates of serum-dependent DNA synthesis were obtained when the bile ductular cells were cultured for 7 to 14 d on tissue culture plastic coated with obtained when the bile ductular cells were cultured for 7 to 14 d on tissue culture plastic coated with either fibronectin from bovine plasma or type I rat-tail collagen. Cells cultured on plastic coated with basement membrane Matrigel exhibited the lowest levels of DNA synthesis, whereas those on plastic alone had intermediate amounts. Furthermore, the addition of epidermal growth factor (50 ng·ml−1·d−1) to medium supplemented with 1.0% fetal bovine serum greatly enhanced the rate of DNA synthesis in bile ductular cells after 6 d in primary culture on type I collagen-coated plastic over that measured in solvent control cultures. These findings indicate that our bile ductular epithelial cell culture model is potentially useful in the study of biliary cell growth regulation and carcinogenesis. This investigation was supported by USPHS grant RO1 CA 39225 to A. E. Sirica by the National Cancer Institute, Department of Health and Human Services, Bethesda, MD. During the period of this study, G. A. Mathis was a recipient of a Fellowship from the Fund for Academic Career Development of the State of Zurich, Switzerland.  相似文献   

17.
Basing on the natural affinity of skin keratinocytes toward extracellular matrix proteins, we have attempted to dissect the population of these cells by varying the time of their adhesion to substrates from fibronectin and collagen of types I and IV. After selection for 10, 20, and 30 min, the keratinocytes were cultivated for 24 h under standard conditions. The area of cell projection on the substrate and the spreading coefficient were measured. Statistically significant morphological differences between cells selected on different substrates were found. The size of cells growing on type-I collagen was twice as large as that of the cells cultivated on collagen type-IV or on fibronectin. Independent of the substratum, up to 60–65% of the cells had a round shape. Keratinocytes cultivated on collagens revealed heterogeneity both in the control and after selection in their adhesion times, while the cells grown on fibronectin behaved as a homogeneous population. These results suggest that, contrary to fibronectin, collagens stabilize some physiological states of keratinocytes corresponding to their interactions with extracellular matrix proteins in the organism. Original Russian Text O.G. Spichkina, G.P. Pinaev, Y.P. Petrov, 2008, published in Tsitologiya, Vol. 50, No. 2, 2008.  相似文献   

18.
Summary The ability of the collagen matrix form to support the formation of a basal lamina by cultured normal human epidermal keratinocytes (NHEK) was determined using transmission electron microscopy. The collagen matrix forms tested in this study were a) a dry type I collagen film and b) a type I collagen gel. NHEK were grown for 14 days on the following five different substrates: plain plastic culture dishes without the addition of collagen (PP); plain plastic culture dishes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-P); plain plastic culture dishes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-P); Millipore Millicell CM microporous membranes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-CM); and Millipore Millicell CM microporous membranes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-CM). NHEK maintained for 2 wk on PP and DCF-P were unable to secrete a basal lamina. NHEK grown for 2 wk on the GEL-P and GEL-CM substrates, however, secreted a contiguous basal lamina at the GEL-NHEK interface. To determine if the appearance of this basal lamina correlated with laminin synthesis, laminin was immunoprecipitated from cellular extracts, as well as media from the apical and basal chambers. NHEK grown on the GEL-P substrate synthesized more laminin than did NHEK grown on the other four alternative substrates. In addition, NHEK grown on GEL-CM were able to direct more laminin to the basal compartment than NHEK grown on DCF-CM substrates. Taken together, the data indicate that the matrix form of collagen can influence basal lamina deposition, laminin synthesis, and laminin trafficking in NHEK.  相似文献   

19.
Adult dorsal mouse epidermis (strain NMRI) was separated from dermis in thin-split sections by cold trypsinization. From the isolated keratinocytes four cell fractions (F1-F4) were obtained using discontinuous Percoll density gradient centrifugation. The fractions were characterized by light microscopy, by indirect immunofluorescence using specific lectins (Bandeirea simplicifolia and Ulex europaeus) and an antibody against the spinous 67-kDa keratin polypeptides, and by electrophoretic analysis of the keratin polypeptide patterns. The heavy fractions, F3 and F4, were identified as being derived from the basal cell layer, whereas the light fractions, F1 and F2, consisted mainly of suprabasal cells. The basal cells (F3 and F4) could be cultivated on plastic substratum coated with rat-tail collagen (4 X MEM, 10% FCS at 34 degrees C; plating efficiency 70-85%). Labeling of DNA with [3H]thymidine indicated that during the first 5 days of cultivation, basal cells ran through two cell cycles, after which the proliferative activity ceased due to terminal differentiation. The addition of the tumor promoter TPA led to a stimulation of DNA synthesis in confluent cultures of both F3 and F4 cells.  相似文献   

20.
Summary The behavior of a recently described cell line, HH25, derived from normal human hepatocytes, has been investigated on several different substrates—tissue-culture plastic, glass, a thin layer of rat-tail collagen I, and thin layers or thick gels of extracellular matrix derived from the Engelbreth-Holm-Swarm murine sarcoma (EHS matrix). Cellular morphology, proliferation, and secretion of three hepatocyte-specific proteins (albumin, α1 acid glycoprotein, and α1 antitrypsin) have been examined. There were no differences in morphology, proliferation, or differentiated function in the cells on either plastic, glass, collagen, I, or a thin layer of EHS matrix, but on a thick EHS matrix gel the cells altered their morphology (forming three-dimensional colonies with canalicular-like structures) and their production of albumin and α1 acid glycoprotein was enhanced. This suggests that the enhanced differentiated function is associated with the morphological change (occurring only on the thick EHS gel) rather than with receptor-mediated cell-matrix interactions (which can also occur on the thin layer of EHS matrix). This cell line is therefore a good in vitro cellular model for the investigation of the roles of morphological changes and of cell-cell and cell-matrix interactions in the control of human hepatocyte behavior without the need for an extensive source of primary tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号