共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin J Mazon H van den Heuvel RH Heck AJ Janssen DB Fraaije MW 《The FEBS journal》2008,275(20):5191-5200
Vanillyl-alcohol oxidase (VAO; EC 1.1.3.38) contains a covalently 8alpha-histidyl bound FAD, which represents the most frequently encountered covalent flavin-protein linkage. To elucidate the mechanism by which VAO covalently incorporates the FAD cofactor, apo VAO was produced by using a riboflavin auxotrophic Escherichia coli strain. Incubation of apo VAO with FAD resulted in full restoration of enzyme activity. The rate of activity restoration was dependent on FAD concentration, displaying a hyperbolic relationship (K(FAD )= 2.3 microM, k(activation) = 0.13 min(-1)). The time-dependent increase in enzyme activity was accompanied by full covalent incorporation of FAD, as determined by SDS/PAGE and ESI-MS analysis. The results obtained show that formation of the covalent flavin-protein bond is an autocatalytic process, which proceeds via a reduced flavin intermediate. Furthermore, ESI-MS experiments revealed that, although apo VAO mainly exists as monomers and dimers, FAD binding promotes the formation of VAO dimers and octamers. Tandem ESI-MS experiments revealed that octamerization is not dependent on full covalent flavinylation. 相似文献
2.
Fraaije MW van den Heuvel RH van Berkel WJ Mattevi A 《The Journal of biological chemistry》1999,274(50):35514-35520
By mutating the target residue of covalent flavinylation in vanillyl-alcohol oxidase, the functional role of the histidyl-FAD bond was studied. Three His(422) mutants (H422A, H422T, and H422C) were purified, which all contained tightly but noncovalently bound FAD. Steady state kinetics revealed that the mutants have retained enzyme activity, although the turnover rates have decreased by 1 order of magnitude. Stopped-flow analysis showed that the H422A mutant is still able to form a stable binary complex of reduced enzyme and a quinone methide product intermediate, a crucial step during vanillyl-alcohol oxidase-mediated catalysis. The only significant change in the catalytic cycle of the H422A mutant is a marked decrease in reduction rate. Redox potentials of both wild type and H422A vanillyl-alcohol oxidase have been determined. During reduction of H422A, a large portion of the neutral flavin semiquinone is observed. Using suitable reference dyes, the redox potentials for the two one-electron couples have been determined: -17 and -113 mV. Reduction of wild type enzyme did not result in any formation of flavin semiquinone and revealed a remarkably high redox potential of +55 mV. The marked decrease in redox potential caused by the missing covalent histidyl-FAD bond is reflected in the reduced rate of substrate-mediated flavin reduction limiting the turnover rate. Elucidation of the crystal structure of the H422A mutant established that deletion of the histidyl-FAD bond did not result in any significant structural changes. These results clearly indicate that covalent interaction of the isoalloxazine ring with the protein moiety can markedly increase the redox potential of the flavin cofactor, thereby facilitating redox catalysis. Thus, formation of a histidyl-FAD bond in specific flavoenzymes might have evolved as a way to contribute to the enhancement of their oxidative power. 相似文献
3.
The reaction leading to the flavinylation of apo-6-hydroxy-D-nicotine oxidase was investigated in cell-free extracts of Eschericia coli carrying the 6-hydroxy-D-nicotine oxidase (6-HDNO) gene on the expression plasmid pDB222. It was demonstrated that the reaction required phosphoenolpyruvate (P-pyruvate) in addition to FAD. When [32P]P-pyruvate or [14C]P-pyruvate were used in the reaction with apo-6-HDNO, no phosphorylated or pyruvylated apo-protein could be detected, however. In order to drive the reaction to completion, FAD and P-pyruvate had to be present simultaneously in the reaction mixture. When apo-6-HDNO, highly purified by affinity chromatography, was used in the reaction with P-pyruvate and FAD, no additional protein fraction was required. A possible reaction scheme for the formation of holoenzyme from 6-HDNO is discussed. 相似文献
4.
van den Heuvel RH van den Berg WA Rovida S van Berkel WJ 《The Journal of biological chemistry》2004,279(32):33492-33500
The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) is oxidized to the widely used flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde). The first step of this reaction is extremely slow due to the formation of a covalent FAD N-5-creosol adduct. After a single round of error-prone PCR, seven mutants were generated with increased reactivity to creosol. The single-point mutants I238T, F454Y, E502G, and T505S showed an up to 40-fold increase in catalytic efficiency (kcat/Km) with creosol compared with the wild-type enzyme. This enhanced reactivity was due to a lower stability of the covalent flavin-substrate adduct, thereby promoting vanillin formation. The catalytic efficiencies of the mutants were also enhanced for other ortho-substituted 4-methylphenols, but not for p-cresol (4-methylphenol). The replaced amino acid residues are not located within a distance of direct interaction with the substrate, and the determined three-dimensional structures of the mutant enzymes are highly similar to that of the wild-type enzyme. These results clearly show the importance of remote residues, not readily predicted by rational design, for the substrate specificity of enzymes. 相似文献
5.
Tahallah N Van Den Heuvel RH Van Den Berg WA Maier CS Van Berkel WJ Heck AJ 《The Journal of biological chemistry》2002,277(39):36425-36432
The oligomerization of the flavoprotein vanillyl-alcohol oxidase (VAO) and its site-directed mutant H61T was studied by mass spectrometry. Native VAO has a covalently bound FAD and forms primarily octameric assemblies of 507 kDa. H61T is purified as a FAD-free apoprotein and mainly exists as a dimeric species of 126 kDa. Binding of FAD to apoH61T rapidly restores enzyme activity and induces octamerization, although association of H61T dimers seems not to be crucial for enzyme activity. Reconstitution of H61T with the cofactor analog 5'-ADP also promotes octamerization. FMN on the other hand, interacts with apoH61T without stimulating dimer association. These results are in line with observations made for several other flavoenzymes, which contain a Rossmann fold. Members of the VAO flavoprotein family do not contain a Rossmann fold but do share two conserved loops that are responsible for binding the pyrophosphate moiety of FAD. Therefore, the observed FAD-induced oligomerization might be general for this family. We speculate that upon FAD binding, small conformational changes in the ADP-binding pocket of the dimeric VAO species are transmitted to the protein surface, promoting oligomerization. 相似文献
6.
Vanillyl-alcohol oxidase catalyses the oxidation of several 4-hydroxybenzyl alcohols by using 8-α-(N3-histidyl)-FAD as a covalently bound prosthetic group. Crystals of vanillyl-alcohol oxidase from Penicillium simplicissimum have been grown by using the vapor diffusion technique. The space group was found to be I4, with cell dimensions a = b = 140.5 Å, c = 132.9 Å. Diffraction data have been recorded to 3.2 Å resolution by using a laboratory source and to 2.5 Å resolution on flash freezing the crystal at the ELETTRA Synchrotron X-ray diffraction beam line. Proteins 27:601–603, 1997. © 1997 Wiley-Liss Inc. 相似文献
7.
The flavoenzyme vanillyl-alcohol oxidase (VAO) catalyzes the conversion of 4-alkylphenols through the initial formation of p-quinone methide intermediates. These electrophilic species are stereospecifically attacked by water to yield (R)-1-(4'-hydroxyphenyl)alcohols or rearranged in a competing reaction to 1-(4'-hydroxyphenyl)alkenes. Here, we show that the product spectrum of VAO can be controlled by medium engineering. When the enzymatic conversion of 4-propylphenol was performed in organic solvent, the concentration of the alcohol decreased and the concentration of the cis-alkene, but not the trans-alkene, increased. This change in selectivity occurred in both toluene and acetonitrile and was dependent on the water activity of the reaction medium. A similar shift in alcohol/cis-alkene product ratio was observed when the VAO-mediated conversion of 4-propylphenol was performed in the presence of monovalent anions that bind specifically near the enzyme active site. 相似文献
8.
The covalent flavoprotein vanillyl-alcohol oxidase (VAO) predominantly converts short-chain 4-alkylphenols, like 4-ethylphenol, to (R)-1-(4'-hydroxyphenyl)alcohols and medium-chain 4-alkylphenols, like 4-butylphenol, to 1-(4'-hydroxyphenyl)alkenes. Crystallographic studies have indicated that the active site residue Asp170 is involved in determining the efficiency of substrate hydroxylation. To test this hypothesis, we have addressed the reactivity of Asp170 variants with 4-alkylphenols. The substrate preference of Asp170Glu was similar to wild type VAO. However, Asp170Ser was most active with branched-chain 4-alkylphenols. The hydroxylation efficiency of the Asp170 variants was dependent on the bulkiness of the newly introduced side chain. The Glu170 mutation favored the production of alkenes, whereas the Ser170 mutation stimulated the formation of alcohols. 相似文献
9.
van den Heuvel RH Fraaije MW Mattevi A van Berkel WJ 《The Journal of biological chemistry》2000,275(20):14799-14808
Vanillyl-alcohol oxidase is a flavoprotein containing a covalent flavin that catalyzes the oxidation of 4-(methoxymethyl)phenol to 4-hydroxybenzaldehyde. The reaction proceeds through the formation of a p-quinone methide intermediate, after which, water addition takes place. Asp-170, located near the N5-atom of the flavin, has been proposed to act as an active site base. To test this hypothesis, we have addressed the properties of D170E, D170S, D170A, and D170N variants. Spectral and fluorescence analysis, together with the crystal structure of D170S, suggests that the Asp-170 replacements do not induce major structural changes. However, in D170A and D170N, 50 and 100%, respectively, of the flavin is non-covalently bound. Kinetic characterization of the vanillyl-alcohol oxidase variants revealed that Asp-170 is required for catalysis. D170E is 50-fold less active, and the other Asp-170 variants are about 10(3)-fold less active than wild type enzyme. Impaired catalysis of the Asp-170 variants is caused by slow flavin reduction. Furthermore, the mutant proteins have lost the capability of forming a stable complex between reduced enzyme and the p-quinone methide intermediate. The redox midpoint potentials in D170E (+6 mV) and D170S (-91 mV) are considerably decreased compared with wild type vanillyl-alcohol oxidase (+55 mV). This supports the idea that Asp-170 interacts with the protonated N5-atom of the reduced cofactor, thus increasing the FAD redox potential. Taken together, we conclude that Asp-170 is involved in the process of autocatalytic flavinylation and is crucial for efficient redox catalysis. 相似文献
10.
11.
van Berkel WJ van den Heuvel RH Versluis C Heck AJ 《Protein science : a publication of the Protein Society》2000,9(3):435-439
Well-resolved ion signals of intact large protein assemblies, with molecular masses extending above one million Dalton, have been detected and mass analyzed using electrospray ionization mass spectrometry, with an uncertainty in mass of <0.2%. The mass spectral data seem to reflect known solution-phase behavior of the studied protein assembly and have therefore been directly used to probe the protein assembly topology and stability as a function of ionic strength and pH. 相似文献
12.
13.
E de Jong W J van Berkel R P van der Zwan J A de Bont 《European journal of biochemistry》1992,208(3):651-657
Vanillyl-alcohol oxidase was purified 32-fold from Penicillium simplicissimum, grown on veratryl alcohol as its sole source of carbon and energy. SDS/PAGE of the purified enzyme reveals a single fluorescent band of 65 kDa. Gel filtration and sedimentation-velocity experiments indicate that the purified enzyme exists in solution as an octamer, containing 1 molecule flavin/subunit. The covalently bound prosthetic group of the enzyme was identified as 8 alpha-(N3-histidyl)-FAD from pH-dependent fluorescence quenching (pKa = 4.85) and no decrease in fluorescence upon reduction with sodium borohydride. The enzyme shows a narrow substrate specificity, only vanillyl alcohol and 4-hydroxybenzyl alcohol are substrates for the enzyme. Cinnamyl alcohol is a strong competitive inhibitor of vanillyl-alcohol oxidation. The visible absorption spectrum of the oxidized enzyme shows maxima at 354 nm and 439 nm, and shoulders at 370, 417 and 461 nm. Under anaerobic conditions, the enzyme is easily reduced by vanillyl alcohol to the two-electron reduced form. Upon mixing with air, rapid reoxidation of the flavin occurs. Both with dithionite reduction and photoreduction in the presence of EDTA and 5-deazaflavin the red semiquinone flavin radical is transiently stabilized. Opposite to most flavoprotein oxidases, vanillyl-alcohol oxidase does not form a flavin N5-sulfite adduct. Photoreduction of the enzyme in the presence of the competitive inhibitor cinnamyl alcohol gives rise to a complete, irreversible bleaching of the flavin spectrum. 相似文献
14.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity. 相似文献
15.
Motteran L Pilone MS Molla G Ghisla S Pollegioni L 《The Journal of biological chemistry》2001,276(21):18024-18030
Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His(69) of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 35-fold; the isomerization step of the intermediate 3-ketosteroid to the final product is also preserved. Stabilization of the flavin semiquinone and binding of sulfite are markedly decreased, this correlates with a lower midpoint redox potential (-204 mV compared with -101 mV for wild-type). Reconstitution with 8-chloro-FAD led to a holoenzyme form of H69A cholesterol oxidase with a midpoint redox potential of -160 mV. In this enzyme form, flavin semiquinone is newly stabilized, and a 3.5-fold activity increase is observed, this mimicking the thermodynamic effects induced by the covalent flavin linkage. It is concluded that the flavin 8alpha-linkage to a (N1)histidine is a pivotal factor in the modulation of the redox properties of this cholesterol oxidase to increase its oxidative power. 相似文献
16.
FAD in monomeric sarcosine oxidase (MSOX) is covalently linked to the protein by a thioether linkage between its 8alpha-methyl group and Cys315. Covalent flavinylation of apoMSOX has been shown to proceed via an autocatalytic reaction that requires only FAD and is blocked by a mutation of Cys315. His45 and Arg49 are located just above the si-face of the flavin ring, near the site of covalent attachment. His45Ala and His45Asn mutants contain covalently bound FAD and exhibit catalytic properties similar to wild-type MSOX. The results rule out a significant role for His45 in covalent flavinylation or sarcosine oxidation. In contrast, Arg49Ala and Arg49Gln mutants are isolated as catalytically inactive apoproteins. ApoArg49Ala forms a stable noncovalent complex with reduced 5-deazaFAD that exhibits properties similar to those observed for the corresponding complex with apoCys315Ala. The results show that elimination of a basic residue at position 49 blocks covalent flavinylation but does not prevent noncovalent flavin binding. The Arg49Lys mutant contains covalently bound FAD, but its flavin content is approximately 4-fold lower than wild-type MSOX. However, most of the apoprotein in the Arg49Lys preparation is reconstitutable with FAD in a reaction that exhibits kinetic parameters similar to those observed for flavinylation of wild-type apoMSOX. Although covalent flavinylation is scarcely affected, the specific activity of the Arg49Lys mutant is only 4% of that observed with wild-type MSOX. The results show that a basic residue at position 49 is essential for covalent flavinylation of MSOX and suggest that Arg49 also plays an important role in sarcosine oxidation. 相似文献
17.
Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity 总被引:1,自引:0,他引:1
In 6-hydroxy-D-nicotine oxidase (6-HDNO) FAD is covalently bound to His71 of the polypeptide chain by an 8 alpha-(N3-histidyl)-riboflavin linkage. The FAD-binding histidine was exchanged by site-directed mutagenesis to either a Cys- or Tyr-residue, two amino acids known to be involved in covalent binding of FAD in other enzymes, or to a Ser-residue. None of the amino acid replacements for His71 allowed covalent FAD incorporation into the 6-HDNO polypeptide. Thus, the amino acid residues involved in covalent FAD-binding require a specific polypeptide surrounding in order for this modification to proceed and cannot be replaced with each other. Enzyme activity was completely abolished with Tyr in place of His71. 6-HDNO activity with non-covalently bound FAD was found with 6-HDNO-Cys and to a lesser extent also with 6-HDNO-Ser. However, the Km values for 6-HDNO-Cys and 6-HDNO-Ser were increased approximately 20-fold as compared to 6-HDNO-His. Both mutant enzymes, in contrast to the wild-type enzyme, needed additional FAD in the enzymatic assay (50 microM for 6-HDNO-Ser and 10 microM for 6-HDNO-Cys) for maximal enzyme activity. 相似文献
18.
Negri A Buckmann AF Tedeschi G Stocker A Ceciliani F Treu C Ronchi S 《Journal of Protein Chemistry》1999,18(6):671-676
L-Aspartate oxidase is a flavoprotein catalyzing the first step in the de novo biosynthesis of pyridine nucleotides in E. coli. Binding of FAD to L-aspartate oxidase is relatively weak (K
d 6.7 × 10–7 M), resulting in partial loss of the coenzyme under many experimental conditions. Only the three-dimensional structure of the apo-enzyme has been obtained so far. In order to probe the flavinbinding site of the enzyme, apo-L-aspartate oxidase has been reacted with N6-(6-carboxyhexyl)-FAD Succinimidoester. The structural characterization of the resulting N6-(6-carbamoylxyhexyl)-FAD-L-aspartate oxidase shows the covalent incorporation of 1 FAD-analog/ monomer. Residue Lys38 was identified as the target of the covalent modification. N6-(6-carbamoylxyhexyl)-FAD-L-aspartate oxidase shows only 2% catalytic activity as compared to the native enzyme. Comparison of some properties of the flavinylated and native enzymes suggests that, although the flavin is covalently bound to the former in the region predicted from molecular modeling studies, the microenvironment around the isoallossazine is different in the two forms. 相似文献
19.
Structural features of cytochrome oxidase 总被引:31,自引:0,他引:31
M Saraste 《Quarterly reviews of biophysics》1990,23(4):331-366
20.
Alditol oxidase (AldO) from Streptomyces coelicolor A3(2) is a soluble monomeric flavin-dependent oxidase that performs selective oxidation of the terminal primary hydroxyl group of several alditols. Here, we report the crystal structure of the recombinant enzyme in its native state and in complex with both six-carbon (mannitol and sorbitol) and five-carbon substrates (xylitol). AldO shares the same folding topology of the members of the vanillyl-alcohol oxidase family of flavoenzymes and exhibits a covalently linked FAD which is located at the bottom of a funnel-shaped pocket that forms the active site. The high resolution of the three-dimensional structures highlights a well-defined hydrogen-bonding network that tightly constrains the substrate in the productive conformation for catalysis. Substrate binding occurs through a lock-and-key mechanism and does not induce conformational changes with respect to the ligand-free protein. A network of charged residues is proposed to favor catalysis through stabilization of the deprotonated form of the substrate. A His side chain acts as back door that "pushes" the substrate-reactive carbon atom toward the N5-C4a locus of the flavin. Analysis of the three-dimensional structure reveals possible pathways for diffusion of molecular oxygen and a small cavity on the re side of the flavin that may host oxygen during FAD reoxidation. These features combined with the tight shape of the catalytic site provide insights into the mechanism of AldO-mediated regioselective oxidation reactions and its substrate specificity. 相似文献