首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased serum enzyme activity in microwave-exposed rats   总被引:1,自引:0,他引:1  
Heat stable serum enzymes were studied in rats exposed to microwaves (2.45 GHz, 120 Hz amplitude modulated) 24 hr after a single 4-hr exposure or immediately after 3 and 10 exposures to 0.1 to 55 mW/cm2. In addition, stable colonic temperature at 41.5 degrees C for 30 min was maintained by microwave exposure in a group of five rats under barbiturate anesthesia. Alkaline phosphatase and lactic dehydrogenase did not increase as a result of microwave exposure. Increased serum glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) were noted in the 41.5 degrees C group 24 hr after exposure. A threshold body temperature for acute cellular injury after microwave exposure was demonstrated. The acute cellular injury could be in the liver. These mild elevations in the serum enzyme levels (mean +/- SE, GOT = 167 +/- 40 U/liter: GPT = 74 +/- 26 U/liter) indicated that the injuries were not accompanied by any significant sequelae in the rat. From this threshold and colonic temperature (41.5 degrees C for 30 min) in barbiturate-anesthetized, microwave-exposed rats, we derived a tentative threshold for the whole-body average absorption rate at 14 W/kg (70 mW/cm2 at 2.45 GHz for adult rats) for 4 hr. This tentative threshold is subject to changes by duration of exposure and by compounding variables influencing maintenance of body temperature.  相似文献   

2.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

3.
The chronotropic and inotropic effects of 2.45-GHz continuous wave (CW) microwave radiation were investigated in the isolated spontaneously beating rat atria. Isolated atria were placed in specially designed tubes inserted into a waveguide exposure system. The atria were then irradiated for a period of 30 min, followed by a 30-min recovery period. The control atria were prepared simultaneously and sham exposed. Experiments were conducted at two temperatures, 22 and 37 °C, and two specific absorption rates, 2 mW/g and 10 mW/g. At both temperatures the rate of atrial contraction was not altered by a 30-min exposure at either 2 or 10 mW/g. The average rate (beats per min) was approximately 100 for both the control and exposed atria at 22 °C and 215 beats per min for both the control and exposed atria at 37 °C. In addition, no inotropic effects on the spontaneously beating atria were noted at any exposure level. These data suggest that 2.45-GHz CW microwave radiation at these intensities has no overt effect on these variables in isolated rat atria.  相似文献   

4.
Pregnant CD-1 mice were exposed to 2.45-GHz continuous wave microwave radiation at an incident power density of 30 mW/cm2. The local specific absorption rate near the uterine area (deep colonic location), as determined from time-temperature profiles measured with a Vitek thermistor probe, was 40.2 mW/g. Groups of mice were exposed 8 hr per day through Days 1-6 or 6-15 of pregnancy. Other groups of animals were exposed to an elevated ambient temperature of 31 degrees C which increased the colonic temperature 2.3 degrees C, the same as that produced by the microwaves. Sham-irradiated groups of animals were treated exactly the same as the microwave-exposed animals. For the two conditions, temperature exposed and sham exposed, two groups of animals were used. One group was handled in the same manner as the microwave-irradiated group and the other group was not handled so as to evaluate the effects of stressing the animals by handling. Eleven groups of animals were used in the complete study: five groups for gestational Days 1-6, five groups for gestational Days 6-15, and one group of cage control animals. On Day 18 of gestation the dams of all experimental groups were sacrificed and their reproductive status was determined. The fetuses were examined for visceral and skeletal alterations. Brain cholinesterase activity and histology were evaluated in the groups exposed on Days 6-15. The results show that microwave radiation increases embryo lethality at the early stages of gestation (exposure Days 1-6). Fetal toxicity and teratogenicity were not significantly increased by exposure to microwaves on either Days 1-6 or 6-15 of gestation. Cholinesterase activity and histology of the brain of 18-day-old fetuses were not adversely affected.  相似文献   

5.
Although decreased serum thyrotropin (TSH) concentration has been found to be part of the endocrine response pattern in rats exposed to microwaves and other stimuli, the response of individual endocrine organs was not activated simultaneously by a given irradiance. Therefore, analytical evaluation of the function of endocrine organs individually as well as collectively is required to characterize the extent of biological involvement in microwave exposure. We have studied the changes in TSH concentration in unanesthetized rats exposed to 2.45 GHz amplitude modulated (120 Hz) microwaves in the far field for 2 and 4 h, between 0 and 55 mW/cm2, and from 1 to 10 times to demonstrate any possible cumulation, acclimation, or sensitization process. Ether inhalation was administered to test the responsiveness of TSH in groups of rats that failed to respond to microwave exposure by lowering TSH concentration. In addition, groups of rats were sampled 24 h after microwave exposure to test the persistency of the microwave effect on serum TSH concentration. Results showed that TSH concentration decreased in rats after microwave exposure. Influence of microwave exposure on serum TSH concentration was independent of the number of exposures indicating absence of cumulation, acclimation, or sensitization. The microwave effect on serum TSH could be dependent on duration of exposure. Decreased TSH concentration was usually accompanied by increased colonic temperature. For 4-h exposure, the lowest irradiance was 20 mW/cm2 or a 0.3 degree C increase in colonic temperature independent of the number of exposures. For 2-h exposure, the lowest irradiance was 30 mW/cm2 or a 1.1 degree C increase in colonic temperature regardless of the number of exposures. All the rats exposed at 10 mW/cm2 for 2 h had a lower TSH concentration than those of sham-exposed rats. Occasionally, significant reduction in TSH concentration could not be found in rats exposed to 20 or 25 mW/cm2 for 2 h. None of the rats exposed at an irradiance lower than 10 mW/cm2 had any change in TSH concentration. Failure of change in TSH concentration in response to microwave exposure was not a reflection of a deficiency since these rats responded to ether inhalation by lowering their TSH concentration. The effect of microwave exposure on TSH concentration was not persistent after exposure. The relation between TSH concentration and colonic temperature was curvilinear (exponential). From these results, two mechanisms and their implications for man were discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
This study was undertaken to determine the effects of 2,450-MHz microwave irradiation on thermoregulation, metabolism, and cardiovascular function of rats. Young adult male animals (430 g) were exposed for 30 min to 2,450-MHz microwaves in a cavity at absorbed dose rates of 0, 4.5, 6.5, or 11.1 mW/G. For animals of the size used in this study, these dose rates represent absorption of energy at the rate of 27.7, 40.1, and 68.2 cal/min, respectively. For a period of 5 h following exposure, measurements were made of colonic temperature, skin temperature, oxygen consumption, carbon dioxide production, respiratory quotient, and heart rate. Rats that received 27.7 cal/min for 30 min exhibited an initial transient increase in colonic and skin temperatures but no alterations in other functions. The group irradiated at 40.1 cal/min had greater elevations in colonic and skin temperatures immediately after exposure, followed by overcompensation and lower than normal colonic temperatures for about 3 h. The metabolic rate was depressed in this group for 3 h. Bradycardia developed within 20 min after exposure and persisted for about 3 h. The group of rats that received 68.2 cal/min for 30 min had responses similar to those of the 40.1 cal/min group, but the changes were more severe and lasted longer. In addition, a number of transient abnormalities were noted in the ECG tracings of rats that had received the highest dose, including irregular rhythms and incomplete heart block. The physiological changes observed in this study can be attributed to the heating induced by irradiation.  相似文献   

7.
The nature of the response of the thyroid gland in animals exposed to microwave irradiation is controversial. An enlarged thyroid and an increase of radioiodine uptake in microwave workers have been reported. Absence of thyroid disorders has also been reported in other exposed populations. Animal experimentation has contributed to the controversy because both increased and decreased thyroid functions have been reported. The thyroxine concentration in rats as representative of thyroid function in animals exposed to 2.45-GHz, 120-Hz amplitude-modulated microwaves has been studied. Comparison was made between thyroxine concentrations in microwave- and sham-exposed rats by Student's t test. After a 1-hr exposure, an increased thyroxine concentration was found in rats exposed at 40 and 70 mW/cm2, but not at 1, 5, 10, 20, 50, or 60 mW/cm2. After a 2-hr exposure, increased thyroxine concentration was noted in rats exposed at 25, 30, and 40 mW/cm2, but not at 1, 5, 10, and 20 mW/cm2. After a 4-hr exposure, thyroxine concentration increased in rats exposed at 1 mW/cm2 and decreased in rats exposed at 20 mW/cm2; but changes were not noted at 5 or 10 mW/cm2. Other experiments included animals that were exposed once for 4 hr (0.1, 1, 10, 25, and 40 mW/cm2), sampled 24 hr after a 4-hr exposure (0.1, 1, 10, 25, and 40 mW/cm2), or exposed for 4 hr 3 times (1, 10, 20, 30, 40, and 55 mW/cm2) and 10 times (1, 10, 20, 25, 30, and 40 mW/cm2), to evaluate the consistency of the thyroxine response. None of the rats in these experiments displayed any alteration of thyroxine concentration, except that decreased thyroxine was noted in rats exposed at 40 mW/cm2 for the third time. These studies covered a long time span; rats from two commercial sources (BS and CR) were used and subjected to different numbers of exposures, and therefore these data were evaluated for their stability. Two factors could influence the result significantly, i.e., source of animal and number of sham exposures. Rats used in the 2-hr exposures were from two different commercial sources; rats from CR had a higher (but normal) thyroxine concentration than did rats from BS. Therefore the data of these animals were separated by commercial source for reevaluation. Instead of increased thyroxine concentration in rats exposed at 25, 30, and 40 mW/cm2, changes were not noted in any microwave-exposed rats. The influence of sham exposure revealed that appropriate concurrent control and specification of animal source are needed in longitudinal studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effects of whole body microwave exposure on the central nervous system (CNS) of the rat were investigated. Rats weighing from 250 to 320 g were exposed for 1 h to whole body microwave with a frequency of 2450 MHz at power densities of 5 and 10 mW.cm-2 at an ambient temperature of 21-23 degrees C. The rectal temperatures of the rats were measured just before and after microwave exposure and mono-amines and their metabolites in various discrete brain regions were determined after microwave exposure. Microwave exposure at power densities of 5 and 10 mW.cm-2 increased the mean rectal temperature by 2.3 degrees C and 3.4 degrees C, respectively. The noradrenaline content in the hypothalamus was significantly reduced after microwave exposure at a power density of 10 mW.cm-2. There were no differences in the dopamine (DA) content of any region of the brain between microwave exposed rats and control rats. The dihydroxyphenyl acetic acid (DOPAC) content, the main metabolite of DA, was significantly increased in the pons plus medulla oblongata only at a power density of 10 mW.cm-2. The DA turnover rates, the DOPAC:DA ratio, in the striatum and cerebral cortex were significantly increased only at a power density of 10 mW.cm-2. The serotonin (5-hydroxytryptamine, 5-HT) content in all regions of the brain of microwave exposed rats was not different from that of the control rats. The 5-hydroxyindoleacetic acid (5-HIAA) content in the cerebral cortex of microwave exposed rats was significantly increased at power densities of 5 and 10 mW.cm-2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effects of intermittent exposure to 5.6-GHz radiofrequency radiation (RFR) on heart rate, blood pressure, and respiratory rate were examined in anesthetized rats. During exposure to 60 mW/cm2 which resulted in a 1 degree C change in colonic temperature, heart rate increased; the values returned to control levels after exposure was discontinued. No changes in mean arterial blood pressure or in respiratory rate were observed. Exposure to 30 mW/cm2 caused no significant changes in heart rate, blood pressure, or respiratory rate. The data indicate that heart rate changes during exposure to 5.6-GHz RFR are related to the average power density applied, and thus to the rate of change in temperature, and not simply to the absolute change in temperature.  相似文献   

10.
Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in H orientation to far-field 9.3-GHz continuous-wave (CW) and pulsed (2 µs, 500 pps) radiofrequency radiation (RFR) at average power densities of 30 and 60 mW/cm2 (whole-body average specific absorption rates of 9.3 and 18.6 W/kg, respectively). Irradiation was conducted to cyclicly increase colonic temperature from 38.5 to 39.5° C. Colonic, tympanic, and subcutaneous temperatures, ECG, blood pressure, and respiratory rate were continuously recorded during experimentation. At both power densities, the subcutaneous and tympanic temperature increases significantly exceeded the colonic temperature increase. At both exposure levels, heart rate increased significantly during irradiation and returned to baseline when exposure was discontinued. Blood pressure and respiratory rate did not significantly change during irradiation. There were no significant differences between the effects of CW and pulsed RFR exposure. The levels of subcutaneous heating and heart rate change were greater, and the times required to achieve and to recover from a 1° C colonic temperature increase were longer than in previous studies conducted at 2.8 GHz. Results of these studies indicate that the carrier frequency used during irradiation markedly affects the pattern of heat distribution and the physiological responses of RF-irradiated animals.  相似文献   

11.
Six-hundred-and-one male Long-Evans rats were used to study the effect of microwaves on adrenocortical secretion. Power density ranged from 0.1 to 55 mW/cm2 (SAR 0.02 to 11 W/kg). The microwave signal was 2.45 GHz amplitude modulated at 120 Hz. Serum corticosterone (CS) concentration was used as an index of adrenocortical function. Ten different exposure protocols were used to identify confounding factors influencing the sensitivity of adrenal cortex to microwave exposure. Increases in CS concentration were proportional to power density or colonic temperature and inversely proportional to the baseline CS. Increased CS concentration was never observed without increased colonic temperature and was not persistent 24 h after exposure. Acclimation (reduction in magnitude of response) could be noted after the tenth exposure. Facilitated heat loss attenuated the magnitude of CS increases by limiting the degree of hyperthermia. Ethanol enhanced the hyperthermic response and desensitized the adrenal response to microwave hyperthermia by increased baseline CS. Ether stimulated adrenal secretion irrespective of previous microwave exposure or adrenal stimulation induced by microwaves. Minor inhibition was also noted occasionally as decreased CS concentration at lower intensity (less than 20 mW/cm2) and decreased postexposure urinary CS excretion at 40 mW/cm2. Adrenal stimulation required minimally a 20 mW/cm2 (4 W/kg) or 0.7 degrees C increase in colonic temperature. An SAR lower than 4 W/kg may stimulate adrenal secretion by potentiating the hyperthermic effect if the ambient temperature is well above 24 degrees C.  相似文献   

12.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

13.
The effects of microwave radiation (2450 MHz, continuous wave, mean specific absorption rate of 103.5 +/- 4.2 W/kg) and convection heating on the nonphosphorylating oxidative metabolism of human peripheral mononuclear leukocytes (96% lymphocytes, 4% monocytes) at 37 degrees C were investigated. Metabolic activity, determined by chemiluminescence (CL) of cells challenged with luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) linked to bovine serum albumin, was detected with a brightness photometer. A significant stimulation after microwave exposure (p less than 0.005) over total CL of matched 37 degrees C incubator controls was observed. A similar degree of stimulation compared to incubator controls was also detected after sham treatment. There was no significant difference between changes in total CL or stimulation indices of the microwave and sham exposed groups. It appears that exposure to microwave radiation, under normothermic (37 +/- 0.03 degrees C) conditions, has no effect on the oxidative metabolic activity of human peripheral mononuclear leukocytes. However, the significant differences between microwave or sham exposed cells and their respective incubator controls occurred because the temperature of the incubator controls did not exceed 35.9 degrees C and this temperature required 39 minutes to reach from 22 degrees C. Slow heating of incubator controls must be accounted for in thermal and radiofrequency radiation studies in vitro.  相似文献   

14.
Coturnix coturnix japonica eggs were exposed to 2.45 GHz continuous wave microwave radiation at an incident power density of 5 mW/cm2 (SAR = 4 mW/g) during the first 12 days of embryogeny. After hatching, hematologic changes in response to an acute hemorrhage were measured in exposed and nonexposed (control) juveniles and adults of both sexes. Reticulocyte numbers and percentages were depressed below control numbers at 24 hr postphlebotomy in exposed adult females. Lymphocyte numbers were depressed below control levels at 24 hr postphlebotomy in exposed juvenile and adult males. At 72 hr heterophil numbers were depressed in exposed juvenile and adult males. These data suggest that microwave irradiation during embryogeny affects the ability of Japanese quail to recover from an acute and voluminous hemorrhage and that these radiation effects are small.  相似文献   

15.
The present study was performed to determine if any heart rate or blood pressure changes occur during intermittent exposure to radiofrequency radiation (RFR), and to determine if parasympathetic blockade due to atropine has any effect on these changes or on thermal responses. Anesthetized rats were exposed to 2.8 GHz pulsed RFR at an average power level of 60 mW/cm2 (average specific absorption rate, 14 W/kg). During an initial exposure period to raise colonic temperature to 39.5 degrees C, heart rate decreased significantly. This thermal bradycardia is similar to that reported by other investigators during environmental heat exposure. Intermittent exposure to radiation, which was designed to result in 1 degree C colonic temperature changes, did not significantly affect heart rate or mean arterial blood pressure, before or after atropine administration. The time courses of these 1 degree C temperature changes were not altered significantly by atropine. Following administration of atropine, the thermal bradycardia during the initial heating period was still evident. Thus, factors other than vagal activity are responsible for the phenomenon. It is possible that the bradycardia is a consequence of a general reduction in metabolism, which occurs also during environmental heat exposure.  相似文献   

16.
Summary To compare the effects of ketamine anesthesia and mild restraint on microwave-induced thermal and cardiovascular changes, sixteen Fischer 344 rats were irradiated in two states:1) unanesthetized, restrained, and2) ketamine-anesthetized (150 mg/kg, I.M.). Individual animals were exposed in H orientation to far-field continuous-wave 2.8-GHz microwaves. Irradiation was conducted at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14.4 W/kg) to cyclicly increase colonic temperature from 38.5 to 39.5° C. Colonic and subcutaneous temperatures, aortic blood pressure, and heart rate were continuously monitored. The time required for colonic temperature to increase 1° C was significantly longer in the anesthetized state; however, the time to return to baseline was similar under both conditions. Heart rate and blood pressure significantly increased during irradiation in the unanesthetized state, but remained virtually unchanged in the anesthetized state. The subcutaneous temperature increase during exposure was significantly greater in the anesthetized state. The differences in responses of anesthetized and mildly restrained animals should be considered when conducting experiments on thermoregulatory responses to microwave irradiation.  相似文献   

17.
Considering the frequent use of mobile phones, we have directed attention to possible implications on cognitive functions. In this study we investigated in a rat model the long-term effects of protracted exposure to Global System for Mobile Communication-900 MHz (GSM-900) radiation. Out of a total of 56 rats, 32 were exposed for 2 h each week for 55 weeks to radio-frequency electromagnetic radiation at different SAR levels (0.6 and 60 mW/kg at the initiation of the experimental period) emitted by a (GSM-900) test phone. Sixteen animals were sham exposed and eight animals were cage controls, which never left the animal house. After this protracted exposure, GSM-900 exposed rats were compared to sham exposed controls. Effects on exploratory behaviour were evaluated in the open-field test, in which no difference was seen. Effects on cognitive functions were evaluated in the episodic-like memory test. In our study, GSM exposed rats had impaired memory for objects and their temporal order of presentation, compared to sham exposed controls (P = 0.02). Detecting the place in which an object was presented was not affected by GSM exposure. Our results suggest significantly reduced memory functions in rats after GSM microwave exposure (P = 0.02).  相似文献   

18.
The purpose of this study was to investigate the effects of 9450-MHz microwaves and extremely low frequency magnetic fields (ELFMF) on the phagocytic activity of rat macrophages in control rats and those treated with vitamins C and E. In the microwave group, 24 albino Wistar rats were exposed to microwaves (2.65 mW/cm2, specific absorption rate [SAR]: 1.80 W/kg) for 1 h/day for 21 days. Thirty-two albino Wistar rats were divided into four groups (one control, three experimental) (n = 8). The rats in the first exposure group were only exposed to microwaves for 1 h per day for 21 days. In addition to exposure with microwaves as in the first experimental group, vitamins E and C (150 mg/kg/day) were injected intraperitoneally into the rats in the second and third exposure groups, respectively. In the magnetic field exposure group, 26 albino Wistar rats were divided into two groups: the sham (n = 12) and exposed groups (n = 14). The rats in the experimental group were exposed to ELFMF (50 Hz, 0.75 mT) for 3 h/day for 3 weeks. After completing the exposure period, the rats were sacrificed under ketalar anesthesia. The viability of isolated alveolar macrophages of rats in the microwave and ELF groups was determined and compared to sham groups. The results were analyzed with the Mann–Whitney U test. In the microwave group, the phagocytic activity in the experimental groups was found to be higher than the sham groups. However, with phagocytic activity in rats treated with both microwaves and vitamins, only the vitamin C group was significant (p < 0.05). In the magnetic field group, the phagocytic activity of rats exposed to ELFMF was lower than that of the sham group, but the results were not significant (p > 0.05). Rectal temperatures of microwaveexposed groups were found to be significantly higher compared to the control group (p < 0.05).  相似文献   

19.
This study was designed to identify and measure changes in thermoregulatory responses, both behavioral and physiological, that may occur when squirrel monkeys are exposed to 2450-MHz continuous wave microwaves 40 hr/week for 15 weeks. Power densities of 1 or 5 mW/cm2 (specific absorption rate = 0.16 W/kg per mW/cm2) were presented at controlled environmental temperatures of 25, 30, or 35 degrees C. Standardized tests, conducted periodically, before, during, and after treatment, assessed changes in thermoregulatory responses. Dependent variables that were measured included body mass, certain blood properties, metabolic heat production, sweating, skin temperatures, deep body temperature, and behavioral responses by which the monkeys selected a preferred environmental temperature. Results showed no reliable alteration of metabolic rate, internal body temperature, blood indices, or thermoregulatory behavior by microwave exposure, although the ambient temperature prevailing during chronic exposure could exert an effect. An increase in sweating rate occurred in the 35 degrees C environment, but sweating was not reliably enhanced by microwave exposure. Skin temperature, reflecting vasomotor state, was reliably influenced by both ambient temperature and microwaves. The most robust consequence of microwave exposure was a reduction in body mass, which appeared to be a function of microwave power density.  相似文献   

20.
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号