首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction in erythropoiesis.   总被引:1,自引:0,他引:1  
The polypeptide hormone erythropoietin (Ep) is a growth factor whose actions on the erythroid progenitor cell induce proliferation and differentiation. The signal transduction system activated by Ep to mediate these cellular processes remains largely uncharacterized despite many years of research devoted to its elucidation. It is clear that an Ep receptor-mediated activation of adenylate cyclase or guanylate cyclase does not occur, although cAMP and cGMP may play modulatory roles. The role of calcium in the action of Ep is less clear. Although the presence of extracellular calcium seems to be an absolute requirement for Ep-induced proliferation, the positive changes induced by Ep in intracellular calcium occur with a time course suggestive of influx through ion channels opening within the cell membrane rather than release of intracellular stores by inositol trisphosphate. There is good evidence for the involvement of phospholipases A2 and C in the actions of Ep, including an early rise in lipoxygenase metabolites of arachidonic acid. Activation of phospholipase C can also result in the activation of protein kinase C in response to Ep. We present a model for the signal transduction pathway of Ep that is consistent with current knowledge and provides a framework for the coordinate actions of several intracellular mechanisms in the mediation of Ep-induced proliferation.  相似文献   

2.
Activation of adipocyte adenylate cyclase by protein kinase C   总被引:5,自引:0,他引:5  
Adenylate cyclase activity in purified rat adipocyte membranes is stimulated by the calcium- and phospholipid-dependent enzyme protein kinase C. Over the concentration range of 100-1000 milliunits/ml, both highly purified (approximately 3000 units/mg of protein) protein kinase C from rat brain and partially purified (14 units/mg of protein) protein kinase C from guinea pig pancreas stimulate cyclase activity. The actions of both protein kinase C preparations on adenylate cyclase activity are dependent on added calcium, which is effective at concentrations less than 10 microM. Exogenous phospholipids are not required for stimulation of adenylate cyclase by protein kinase C; but, under typical cyclase assay conditions, the adipocyte membranes satisfy the lipid requirement for protein kinase C phosphorylation of histone. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate enhances the kinase action on cyclase, and the phorbol ester is effective at concentrations equimolar with the kinase (less than 10 nM). With the brain protein kinase C, 12-O-tetradecanoylphorbol-13-acetate effects are especially evident at limiting calcium concentrations. Inhibitors of protein kinase C activity, such as chlorpromazine, palmitoylcarnitine, and polymyxin B, inhibit selectively that adenylate cyclase activity which is stimulated by protein kinase C plus calcium. It is concluded that protein kinase C acts directly on the adipocyte adenylate cyclase system.  相似文献   

3.
Trifluoperazine (TFP), a phenothiazine antipsychotic agent with calmodulin antagonist property, induces DNA fragmentation in a dose- and time-dependent manner in PC12 cells. Various agents affecting calcium mediated intracellular signal transduction such as calcium chelators, calcium ionopores, inhibitors of phospholipase C, and activators/inhibitors of protein kinase C did not block TFP-induced DNA fragmentation. Some of these agents themselves induced DNA fragmentation in the conditions under which they were examined. However, cholera toxin (selective Gs activator), forskolin (adenylate cyclase activator) or dibutyryl cyclic AMP (cyclic AMP analogue) inhibited TFP-induced DNA fragmentation in a dose-dependent manner. These results suggest that it is not the calcium but the Gs and adenylate cyclase pathways that play an important role in TFP-induced DNA fragmentation in PC12 cells.  相似文献   

4.
Calmodulin regulation of adenylate cyclase activity   总被引:8,自引:0,他引:8  
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal.  相似文献   

5.
Steroidogenesis in teleost fish, as in other vertebrate groups, is mediated by the activation of adenylate cyclase. For the present studies, calcium ionophore A23187 and either phorbol 12-myristate 13-acetate (PMA) or 1-oleoyl-2-acetylglycerol (OAG) were used to investigate the possible roles that changes in intracellular calcium content and protein kinase C activation play in steroid production by goldfish preovulatory ovarian follicles incubated in vitro. While ineffective alone, PMA (1.6-400 nM) and OAG (25-100 micrograms/ml) exhibited classical synergism with A23187 (1.0-10 microM), leading to increased testosterone production. The magnitude of these responses was at least tenfold lower than that obtained with human chorionic gonadotropin (hCG), forskolin, or dibutyryl cyclic adenosine 3',5'-monophosphate. Testosterone production stimulated by hCG and forskolin was blocked by addition of PMA but not OAG. Unlike PMA, the inactive phorbol ester 4 alpha-phorbol 12,13-dideconate did not influence basal or stimulated testosterone production. A23187 had a biphasic effect on stimulated testosterone production: a dosage of 0.25 or 1.0 microM potentiated the action of submaximally effective dosages of hCG or forskolin on testosterone production; a higher dosage of 4 microM inhibited stimulated testosterone production by up to 50%. In conclusion, these studies suggest that, in addition to the adenylate cyclase second messenger system, changes in intracellular calcium and activation of protein kinase C may modulate steroidogenesis in goldfish ovarian follicles.  相似文献   

6.
Addition of phorbol ester-activated, partially purified protein kinase C to membranes of human platelets had no effect on forskolin stimulation of the adenylate cyclase and increased stimulation by prostaglandin E1 only at high GTP concentrations by preventing inhibition by GTP. Hormonal inhibition of the platelet adenylate cyclase by epinephrine was eliminated or largely impaired. At low GTP concentrations, epinephrine even caused a small increase in cyclase activity. The data suggest that activated protein kinase C interferes with GTP- and hormone-induced adenylate cyclase inhibition probably by phosphorylating the inhibitory guanine nucleotide-binding regulatory component Ni.  相似文献   

7.
Cell-free desensitization of the pigeon erythrocyte adenylate cyclase-coupled beta-adrenoreceptor system requires soluble cellular factors. Desensitization is observed when a mixture of cell membranes and the cytosol fraction are incubated with isoproterenol or cAMP and IBMX for 20 min at 37 degrees C. Mg2+ and ATP are also required for cell-free desensitization. When adenylate cyclase is maximally stimulated by isoproterenol or GTP-gamma-S, the decrement of activity is 45-50% and 20-25%, respectively. Adenylate cyclase desensitization may be also produced by preincubation of plasma membranes with the catalytic component of cAMP-dependent protein kinase. Cell-free desensitization is associated with functional uncoupling of the beta-receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide-sensitive complex with the agonist and by the increase of the lag-phase of adenylate cyclase activation by isoproterenol and GTP-gamma-S. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be the phosphorylation of a component(s) of the beta-receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

8.
High-resolution two-dimensional gel electrophoresis of proteins labeled with either 32Pi or [35S]methionine was used to study interactions between cyclic AMP and tetradecanoyl phorbol acetate (TPA) at the level of intracellular protein phosphorylation. Cultured S49 mouse lymphoma cells were used as a model system, and mutant sublines lacking either the catalytic subunit of cyclic AMP-dependent protein kinase or the guanyl nucleotide-binding "Ns" factor of adenylate cyclase provided tools to probe mechanisms underlying the interactions observed. Three sets of phosphoproteins responded differently to TPA treatment of wild-type and mutant cells: Phosphorylations shown previously to be responsive to activation of intracellular cyclic AMP-dependent protein kinase were stimulated by TPA in wild-type cells but not in mutant cells, a subset of phosphorylations stimulated strongly by TPA in mutant cells was inhibited in wild-type cells, and two novel phosphoprotein species appeared in response to TPA only in wild-type cells. The latter two classes of TPA-mediated responses specific to wild-type cells could be evoked in adenylate cyclase-deficient cells by treating concomitantly with TPA and either forskolin or an analog of cyclic AMP. Three conclusions are drawn from our results: 1) TPA stimulates adenylate cyclase in wild-type cells causing increased phosphorylation of endogenous substrates by cyclic AMP-dependent protein kinase, 2) activated cyclic AMP-dependent protein kinase inhibits phosphorylation (or enhances dephosphorylation) of a specific subset of TPA-dependent phosphoproteins, and 3) cyclic AMP-dependent events facilitate TPA-dependent phosphorylation of some substrate proteins.  相似文献   

9.
The influence of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), was studied on regulation of human platelet adenylate cyclase. Intact platelets were pretreated with the phorbol ester and, thereafter, membranes were prepared and the regulation of the hormone-sensitive adenylate cyclase in these membranes was studied. The following data were obtained: The TPA treatment applied had apparently no effect on the activity of the catalytic moiety of the platelet adenylate cyclase nor on the stimulatory NS protein nor on stimulatory hormone receptors (prostaglandin E1) and the mutual interactions of these components of the stimulatory hormone-sensitive pathway. However, the TPA treatment of intact platelets largely impaired the GTP-dependent, hormone-sensitive inhibitory pathway to the adenylate cyclase, involving the inhibitory Ni protein. The pretreatment led to a large reduction or loss of adenylate cyclase inhibition by GTP itself and by the inhibitory agonists, epinephrine and thrombin, inhibiting the untreated enzyme via separate receptors by an Ni-mediated process. In contrast, platelet adenylate cyclase inhibition not involving the Ni protein was not affected by the TPA treatment. The observed effects of TPA were very rapid in onset and were not shared by a derivative of TPA which did not activate protein kinase C. The data obtained suggest than protein kinase C activated by the phorbol ester interferes with the platelet adenylate cyclase system, leading to a specific alteration of the Ni-protein-mediated signal transduction to the adenylate cyclase.  相似文献   

10.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

11.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

12.
The acrosome reaction in human spermatozoa   总被引:5,自引:0,他引:5  
During gamete interaction, sperm acrosome reaction (AR) induced by oocyte investment is a prerequisite event for the spermatozoa to pass through the zona pellucida (ZP), fuse with and penetrate the oocyte. Progesterone (P4), secreted by cumulus cells, is an important cofactor for the occurrence of this exocytosis event. The AR results from the fusion between outer acrosomal and plasma membranes, leading to inner acrosomal membrane exposure. Binding of agonists, P4 or ZP3 glycoprotein, to plasma membrane sperm receptors activates intraspermatic signals and enzymatic pathways involved in the AR. Among the proteins or glycoproteins described as potential sperm receptors for ZP, Gi/Go protein-coupled and tyrosine kinase receptors have been described. Sperm receptors for P4 are poorly characterized, except a putative GABA(A)-like receptor. ZP- and P4-promoted AR is mediated by an obligatory intracellular calcium increase, appearing first at the acrosome equatorial segment and spreading throughout the head. The plasma membrane channels involved in calcium entry are operated by a plasma membrane depolarization and protein phosphorylations mediated by protein kinase C and tyrosine kinase protein. Part of the calcium increase could also be due to intracellular store release through IP3- and nucleotide (cAMP)-gated channels. Besides adenylate cyclase and phospholipase C activations, intracellular calcium increase also stimulates PLA2 activity and actin depolymerization, leading to membrane fusion. Evaluation of AR by staining or fluorescent probes can be useful to predict fertilization success and to direct the therapeutic strategy in male infertility.  相似文献   

13.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

14.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

15.
The phospholipase C-mediated hydrolysis of phosphatidylcholine has been shown recently to be activated by a number of agonists. Muscarinic receptors, which trigger various signal transduction mechanisms including inhibition of adenylate cyclase through Gi, have been shown to be potent stimulants of this novel phospholipid degradative pathway. We demonstrate here, by exogenous addition of Bacillus cereus phosphatidylcholine-hydrolyzing phospholipase C, that phosphatidylcholine breakdown mimics the ability of carbachol to inhibit adenylate cyclase. This effect is sensitive to pertussis toxin and is entirely dependent on the presence of protein kinase C. This kinase is also required for the inhibition by carbachol of adenylate cyclase. These results suggest that the activation of phosphatidylcholine breakdown by phospholipase C may play an important role linking or favoring the coupling muscarinic receptors to Gi. Results presented here also show that phospholipase C-mediated hydrolysis of phosphoinositides by exogenous addition of Bacillus thuringiensis phosphoinositide-hydrolyzing phospholipase C does not affect adenylate cyclase, despite the fact that protein kinase C is translocated to an extent similar to that produced by the hydrolysis of phosphatidylcholine. According to the results shown here, both phospholipases also differ in their ability to down-regulate protein kinase C as well as to phosphorylate p80 and to transmodulate the binding of epidermal growth factor, two well established effects of protein kinase C in Swiss 3T3 fibroblasts. This emphasizes the complexity, from a functional point of view, of protein kinase C activation "in vivo."  相似文献   

16.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

17.
Previous studies in Chinese-hamster fibroblasts (CCL39 line) indicate that an important signalling pathway involved in thrombin's mitogenicity is the activation of a phosphoinositide-specific phospholipase C, mediated by a pertussis-toxin-sensitive GTP-binding protein (Gp). The present studies examine the effects of thrombin on the adenylate cyclase system and the interactions between the two signal transduction pathways. We report that thrombin exerts two opposite effects on cyclic AMP accumulation stimulated by cholera toxin, forskolin or prostaglandin E1. (1) Low thrombin concentrations (below 0.1 nM) decrease cyclic AMP formation. A similar inhibition is induced by A1F4-, and both thrombin- and A1F4- -induced inhibitions are abolished by pertussis toxin. (2) Increasing thrombin concentration from 0.1 to 10 nM results in a progressive suppression of adenylate cyclase inhibition and in a marked enhancement of cyclic AMP formation in pertussis-toxin-treated cells. A similar stimulation is induced by an active phorbol ester, and thrombin-induced potentiation of adenylate cyclase is suppressed by down-regulation of protein kinase C. Therefore, we conclude that (1) the inhibitory effect of thrombin on adenylate cyclase is the direct consequence of the activation of a pertussis-toxin-sensitive inhibitory GTP-binding protein (Gi) possibly identical with Gp, and (2) the potentiating effect of thrombin on cyclic AMP formation is due to stimulation of protein kinase C, as an indirect consequence of Gp activation. Our results suggest that the target of protein kinase C is an element of the adenylate cyclase-stimulatory GTP-binding protein (Gs) complex. At low thrombin concentrations, activation of phospholipase C is greatly attenuated by increased cyclic AMP, leading to predominance of the Gi-mediated inhibition.  相似文献   

18.
Jakobs, Bauer & Watanabe [(1985) Eur. J. Biochem. 151, 425-430] reported that treatment of platelets with phorbol 12-myristate 13-acetate (PMA) prevented GTP- and agonist-induced inhibition of adenylate cyclase in membranes from the platelets. This was attributed to the phosphorylation of the inhibitory guanine nucleotide-binding protein (Gi) by protein kinase C. In the present study, the effects of PMA on cyclic [3H]AMP formation and protein phosphorylation were studied in intact human platelets labelled with [3H]adenine and [32P]Pi. Incubation mixtures contained indomethacin to block prostaglandin synthesis, phosphocreatine and creatine kinase to remove ADP released from the platelets, and 3-isobutyl-1-methylxanthine to inhibit cyclic AMP phosphodiesterases. Under these conditions, PMA partially inhibited the initial formation of cyclic [3H]AMP induced by prostaglandin E1 (PGE1), but later enhanced cyclic [3H]AMP accumulation by blocking the slow decrease in activation of adenylate cyclase that follows addition of PGE1. PMA had more marked and exclusively inhibitory effects on cyclic [3H]AMP formation induced by prostaglandin D2 and also inhibited the action of forskolin. Adrenaline, high thrombin concentrations and, in the absence of phosphocreatine and creatine kinase, ADP inhibited cyclic [3H]AMP formation induced by PGE1. The actions of adrenaline and thrombin were attenuated by PMA, but that of ADP was little affected, suggesting differences in the mechanisms by which these agonists inhibit adenylate cyclase. sn-1,2-Dioctanoylglycerol (diC8) had effects similar to those of PMA. The actions of increasing concentrations of PMA or diC8 on the modulation of cyclic [3H]AMP formation by PGE1 or adrenaline correlated with intracellular protein kinase C activity, as determined by 32P incorporation into the 47 kDa substrate of the enzyme. Parallel increases in phosphorylation of 20 kDa and 39-41 kDa proteins were also observed. Platelet-activating factor, [Arg8]vasopressin and low thrombin concentrations, all of which inhibit adenylate cyclase in isolated platelet membranes, did not affect cyclic [3H]AMP formation in intact platelets. However, the activation of protein kinase C by these agonists was insufficient to account for their failure to inhibit cyclic [3H]AMP formation. Moreover, high thrombin concentrations simultaneously activated protein kinase C and inhibited cyclic [3H]AMP formation. The results show that, in the intact platelet, the predominant effects of activation of protein kinase C on adenylate cyclase activity are inhibitory, suggesting actions additional to inactivation of Gi.  相似文献   

19.
In this report, we demonstrate that calcium and phorbol esters enhance cAMP production in GH4C1 cell homogenates. The mechanism for this is a reduction in the rate of decay of adenylate cyclase activity over the course of the assay. Purified protein kinase C can reconstitute calcium- and phorbol ester-dependent adenylate cyclase. Phorbol ester-activated protein kinase C increases both the initial rate of cAMP synthesis and reduces the time-dependent decay of adenylate cyclase activity in membrane preparations. The rate of cAMP production is fit to an equation derived from a model which assumes that adenylate cyclase initially exists in a high activity state which decays exponentially into a low activity state. We suggest that protein kinase C can both prevent the decay of the high activity state and convert the low activity state into the high activity state.  相似文献   

20.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号