首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

2.
45Ca2+ uptake and cytosolic Ca2+ concentrations [( Ca2+]i) were measured in synaptosomes prepared from the cerebral cortex of 3-, 16-, and 24-month-old male Charles River Wistar rats. Electron-microscopic examination demonstrated no morphological differences between the synaptosomes prepared from 3- and 24-month-old rats. The fast phase of Ca2+ uptake was reduced in the 24-month-old animals as compared to the 3-month-old ones (-23%, p less than 0.001), whereas no difference was found between the 16- and the 3-month-old rats. Age did not modify [Ca2+]i, as measured by the quin 2 technique, both at rest and immediately after depolarization with 50 mM K+. The Ca2+ load following depolarization was cleared in about 13 min in the 3-month-old rats. The rate of clearance was significantly slower both in the 16- (p less than 0.01) and in the 24-month-old rats (p less than 0.0001). The addition of verapamil (60 microM) after depolarization restored [Ca2+]i to resting level in aged rats at the same rate as in young rats. A prolonged Ca2+ influx, therefore, may be responsible for the slower clearance of Ca2+ load in aged rats.  相似文献   

3.
An increase of intracellular calcium ion concentration and of the 45Ca2+ entry, a decrease in Na+,K(+)-ATPase activity, and activation of Na+/Ca2+ exchange were shown to be initiated by glutamate in the rat brain cortex synaptosomes. These effects could be prevented with antagonists and blocking agents of the NMDA receptors. Pre-incubation of the synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 was shown to normalise [45Ca2+], the rate of 45Ca2+ entry, and the activity of Na+,K(+)-ATPase in the synaptosomes. The data obtained suggest that calcium ions entering the brain cortex neurones via the NMDA receptors in presence of excessive glutamate, trigger activation of free radical reactions damaging the neurones in ischemia, cerebral lesions, and other pathological conditions.  相似文献   

4.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

5.
We have used a resting (5 mM K+) or depolarizing (60 mM K+) choline-based medium, and a nondepolarizing sodium-based or choline-based medium, to characterize the inhibitory potential of tricyclic antidepressants against the voltage-dependent calcium channels or the Na(+)-Ca2+ exchange process, respectively, in synaptosomes from rat brain cortex. Imipramine, desipramine, amitriptyline, and clomipramine inhibited net K(+)-induced 45Ca uptake with similar IC50 values (26-31 microM), and this uptake was also inhibited by diltiazem with an IC50 of 36 microM; these results indicate an inhibition of voltage-dependent calcium channels by tricyclic antidepressants. The net uptake of 45Ca induced by Na(+)-Ca2+ exchange was also inhibited by the four tricyclic antidepressants tested, but not by diltiazem; imipramine (IC50 = 94 microM) was a more potent inhibitor of this process than desipramine (IC50 = 151 microM), and the IC50 values of amitriptyline (107 microM) and clomipramine (97 microM) were similar to that of imipramine. Some degree (approximately 25%) of brain calcium channel blockade could be present at the steady-state concentrations of tricyclic antidepressants expected to occur therapeutic use of these compounds to treat depression or panic disorder.  相似文献   

6.
The modulation of rat brain Na(+)-Ca2+ exchange by K+   总被引:1,自引:0,他引:1  
The involvement of potassium ions in the Na(+)-Ca2+ exchange process was studied in rat brain synaptic plasma membrane (SPM) vesicles. Addition of equimolar [K+] to the intravesicular and the extravesicular medium led to a stimulation of the Na+ gradient-dependent Ca2+ influx; this stimulation was noticeable already at 0.5 mM and reached its maximum at 2 mM K+. The magnitude of the K+ stimulation was between 1.3-2.5-fold in different SPM preparations. K+ ions also stimulated the Na(+)-dependent Ca2+ efflux. K+ stimulation of Na(+)-Ca2+ exchange is of considerable specificity, since it is not mimicked by either Li+ or H+. The following lines of evidence suggest that K+ modulation of Na(+)-Ca2+ exchange involves the catalytic moiety of the transporter itself and not an unrelated K+ channel which modulates the membrane potential. 1) K+ stimulation of the transport process was conserved following reconstitution of the transporter into phospholipid-rich liposomes, an experimental condition which presumably separates the native membrane proteins among different vesicular structures. 2) K+ stimulation of Na+ gradient-dependent Ca2+ influx persists also when the build up of negative inside membrane potential is prevented by addition of carbonyl cyanide p-trifluoromethoxy phenylhydrazone which renders the membrane highly permeable to protons both in the native and the reconstituted preparation. 3) K+ stimulation of Na+ gradient-dependent Ca2+ influx is obtained also when tetraethylammonium chloride, 2,3-diaminopyridine and Cs+ are added to the Ca2+ uptake medium. Reconstituted SPM vesicles take up 86Rb+ in response to activation of Na+ gradient-dependent Ca2+ influx. The ratio of Ca2+ taken up by SPM vesicles in a Na+ gradient-dependent manner to the corresponding amounts of Rb+ taken up varies between 8-5 in different SPM preparations. If the stoichiometry of the process is 1 Rb+/1 Ca2+, then Rb+ cotransport is mediated by 10-20% of the transporters present in the preparation.  相似文献   

7.
The verapamil-sensitive Ca2+ channel in the synaptosomal plasma membrane is investigated. Verapamil is without effect on Ca2+ uptake or steady-state content in synaptosomes with a polarized plasma membrane, but completely inhibits the additional Ca2+ uptake following plasma-membrane depolarization by high [K+], by veratridine plus ouabain or by high concentrations of the permeant cation tetraphenylphosphonium. Verapamil-insensitive Ca2+ influx and steady-state content are identical in polarized and depolarized synaptosomes, even though the Na+ electrochemical potential is greatly decreased in the latter, indicating that Na+/Ca2+ exchange is not a significant mechanism for Ca2+ efflux under these conditions. A transient Na+-dependent Ca2+ efflux can only be observed on addition of Na+ to Na+-depleted depolarized synaptosomes. While 0.2 mM verapamil decreases the ate of 86Rb+ efflux and 22Na+ entry during depolarization induced by veratridine plus ouabain, the final steady-state Na+ accumulation is not inhibited. Ca2+ efflux from synaptosomes following mitochondrial depolarization does not occur by a verapamil-sensitive pathway.  相似文献   

8.
The contribution of Ca2+ channels and Na+/Ca2+ exchange to Ca2+ uptake in rat brain synaptosomes upon long- (t greater than or equal to 30 s) and short-term (t less than 30 s) depolarization by high K+ was studied by measuring the 45Ca content and free Ca2+ concentration (from Quin-2 fluorescence). At 37 degrees C, the system responsible for the K+-stimulated uptake of 45Ca (t greater than or equal to 30 s) and the Na+/Ca+ exchanger are characterized by a similar concentration dependence of external Ca2+ (Ca0(2+] and K0+ as well as by an equal sensitivity to verapamil (Ki = approximately 20-40 microM) and La2+ (Ki = approximately 50 microM). These data and the results from predepolarization suggest that the 45Ca entry into synaptosomes at t greater than or equal to 30 s is due to the activation of Na+/Ca+ exchange caused by its electrogenic component, while the insignificant contribution of Ca2+ channels can be accounted for by their inactivation. At low temperatures (2-4 degrees C) which decelerate the inactivation, the initial phase of 45Ca uptake is fully provided for by Ca2+ channels, showing a lower (as compared to the exchanger) affinity for Ca0(2+) (K0.5 greater than 1 mM)m a greater sensitivity to La3+ (Ki = approximately 0.2-0.3 microM) and verapamil (Ki = approximately 2-3 microM); these channels are fully inactivated by predepolarization with K0+, ouabain and batrachotoxin. The Ca2+ channels can be related to T-type channels, since they are not blocked by nicardipine and niphedipine.  相似文献   

9.
Romero PJ  Romero EA 《Cell calcium》1999,26(3-4):131-137
The effect of cell ageing on Ca2+ entry was studied in this work, using sub-populations of young and old human red cells, separated by stringent percoll density gradients. Additionally, the influence of an osmotic gradient was investigated as a model for shear stress. Ca2+ entry was assessed at 37 degrees C, under conditions where the Ca2+ pump was either inhibited by NaVO3 (0.5-10 mM) or inactivated by ATP depletion. The entry was linear with time up to 1 h. No differences in Ca2+ influx between the two sub-populations were detected in isotonic Na(+)-medium. In contrast, after incubation in anisosmotic media, Ca2+ entry into old cells was significantly higher than into younger cells. In hypotonic Na(+)-medium, the entry into old cells was not affected by La3+ (10 microM) whilst it was partially blocked by Gd3+ at a similar level (half-maximal effect attained with about 1 microM Gd3+). The entry into young cells was only slightly stimulated by these lanthanides at low concentrations (10 microM), regardless of the tonicity of incubation medium. Further increasing Gd3+ levels above 10 microM markedly enhanced Ca2+ entry into both cell types. The selective blockade of Ca2+ influx by low Gd3+ concentrations suggests presence of mechano-sensitive channels, that become preferentially activated in old cells. Activation of these channels during in-vivo microcirculation may help to explain the increased Ca2+ content of senescent cells.  相似文献   

10.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

11.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

12.
M A Collins  K Raikoff 《Life sciences》1990,47(14):1221-1226
Increases in cytosolic free calcium concentrations ([Ca++]i) may underlie acute neuronal degeneration during ischemic or anoxic episodes, seizures and excitotoxin treatment. With quin-2 and fura-2 fluorescent probes, we have obtained evidence for elevated [Ca++]i in cerebrocortical terminals of adult rats following chronic consumption of ethanol-containing liquid diets for "neurotoxic" durations. Compared to isocaloric carbohydrate-fed controls, ethanol-fed rats had significantly higher [Ca++]i in P2 synaptosomal fractions after 4 months of diet intake, and in purified cerebrocortical synaptosomes after diet ingestion for 10 months. In addition, [Ca++]i in the synaptosomal fractions of ethanol-fed rats from either exposure time were markedly resistant to K(+)-dependent potentiation. Persistently increased synaptic [Ca++]i and a blunted response to K+ depolarization following chronic ethanol ingestion lead us to associate impaired Ca++ homeostasis in the neurodegenerative processes of alcoholism.  相似文献   

13.
14.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

15.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

17.
In the experiments conducted with application of an isotopic technique (45Ca2+) on the myometrium cells suspension treated by digitonin solution (0.1 mg/ml) some properties of Ca ions accumulation system in the mitochondria--cationic and substrate specificity as well as effects of Mg2+ and some other bivalent metals ions on the Ca2+ accumulation velocity have been estimated. Ca ions accumulation from the incubation medium containing 3 mM sodium succinate Na, 2 mM Pi (as potassium K(+)-phosphate buffer, pH 7.4 at 37 degrees C), 0.01 mM (40CaCl2 + 45CaCl2) and 100 nM thapsigargin--selective inhibiting agent of endoplasmatic reticulum calcium pump were demonstrated as detected just only in presence of Mg, while not Ni, Co or Cu ions. The increase of Mg2+ concentration from 1 x 10(-6) to 10(-3) M induced the ATP dependent transport activation in the myometrium mitochondria. Under [Mg2+] increase till 40 mM this cation essentially decreased Ca2+ accumulation (by 65% from the maximal value). The optimum for Ca2+ transport in the myometrium cells suspension is Mg2+ 10 mM concentration. Ka activation apparent constant along Mg2+ value (in presence 3 mM ATP and 3 mM sodium succinate) is 4.27 mM. The above listed bivalent metals decreased Mg2+, ATP-dependent accumulation of calcium, values of inhibition apparent constants for ions Co2+, Ni2+ and Cu2+ were--2.9 x 10(-4) M, 5.1 x 10(-5) M and 4.2 x 10(-6) M respectively. For Mg2+, ATP-dependent Ca2+ transport in the uterus myocytes mitocondria a high substrate specificity is a characteristic phenomenon in elation to ATP: GTP, CTP and UTP practically fail to provide for Ca accumulation process.  相似文献   

18.
Human platelets were loaded with the fluorescent Na(+)-sensitive dye sodium-binding benzofuran isophtalate (SBFI), and changes in the fluorescence excited at 345 and 385 nm were analyzed after manipulations that evoked predictable changes in the cytosolic Na+ concentration ([Na+]i). Raising [Na+]i by either gramicidin D or monensin specifically increased the fluorescence excited at 345 nm and decreased that excited at 385 nm. Hence, calculation of changes in the 345/385 nm excitation ratio yields an estimate of actual changes in [Na+]i. A transient activation of Na+/H+ exchange evoked by addition of acidified platelets to buffer, pH 7.4, evoked a transient rise in [Na+]i. The re-establishment of basal [Na+]i could be prevented by ouabain, indicating an involvement of the Na+,K(+)-ATPase. Upon stimulation by 0.5 unit/ml of thrombin, [Na+]i immediately increased by 16 +/- 4 mM and this rise continued for at least 60 min after addition of agonist, albeit at a lower rate. This latter sustained rise could not be curtailed by scavenging thrombin by means of hirudin. Addition of ouabain or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate induced a comparable slow rise in the 345/385 excitation ratio. This may indicate a protein kinase C-mediated inhibition by thrombin of the Na+,K(+)-ATPase. In the absence of extracellular Ca2+ (Ca2+o), the [Na+]i gain was augmented to 38 +/- 9 mM. This additional uptake of Na+ was prevented by (i) Mn2+ ions, (ii) La3+ ions, (iii) the blocker of receptor-mediated Ca2+ entry (1-[beta[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl]-1H-im ida zole hydrochloride), and (iv) by hirudin which reversed receptor occupancy by thrombin. These findings suggest that the additional thrombin-induced [Na+]i gain in the absence of Ca2+o is due to Na+ influx through a Ca2+ entry pathway. The increase in [Na+]i in the presence of Ca2+o results from Na+ influx via Na+/H+ exchange.  相似文献   

19.
Vanadate is a commonly used Ca2+ pump blocker, exerting a substantial effect on Ca2+ extrusion at millimolar concentrations in human red cells. At such levels, vanadate also seems to open an L type-like Ca2+ channel in these cells (J Biol Chem 257 (1982) 7414; Gen Physiol Biophys 16 (1997) 359). Since neither a dose-dependence effect nor a metabolic requirement for the latter action could be found in the literature, we have addressed this matter in the present work. Accordingly, vanadate action on Ca2+ entry was systematically investigated in both young and old human red cells after metabolic depletion. Although vanadate enhanced Ca2+ entry indifferently in either cell type, a distinct over-all effect was paradoxically found depending on whether or not metabolic substrates that give rise to ATP were present. In ATP-depleted cells, unlike with ATP-containing cells, vanadate-stimulated Ca2+ entry was neither blocked by raising external K+ nor by adding voltage-dependent Ca2+ channel blockers (nifedipine, calciseptine, FTX3.3) or compounds affecting polyphosphoinositide metabolism (Li+, neomycin). Likewise, full substitution of external Na+ by other cations did not inhibit vanadate-enhanced Ca2+ entry. Regardless of the cell age, stimulation by vanadate depended strongly on internal Na+ (0-30 mM). Vanadate stimulation was significantly reduced (about 55%) by heparin (10 mg/ml) only in young cells and by ryanodine (about 35%, 250 microM) in old cells. The results suggest presence of a new vanadate-induced Ca2+ entry pathway in ATP-depleted cells.  相似文献   

20.
Synaptic plasma membranes obtained by hypo-osmotic treatment of purified Torpedo ocellata synaptosomes, contain an electrogenic Na(+)-Ca2+ exchange system. The dependence of the initial reaction rate on [Ca2+] reveals a single binding site for Ca2+ with an average apparent Km of 13.66 (S.D. = 12.07) microM [Ca2+] and maximal reaction velocity of Vmax = 11.33 (S.D. = 5.93) nmol/mg protein per s. The dependence of the initial rate of the Na+ gradient dependent Ca2+ influx on the internal [Na+] exhibits a sigmoidal curve which reaches half-maximal reaction rate at 170.8 (S.D. = 19.9) mM [Na+]. Addition of ATP gamma S does not change the K0.5 to Na+. The average Hill coefficient is 3.09 (S.D. = 0.86) indicating that 3-4 Na+ ions are exchanged for each Ca2+. Na+ gradient dependent Ca2+ uptake in Torpedo SPMs takes place also in the absence of K+ suggesting that K+ co-transport is not obligatory. The temperature dependence of the initial and steady-state rates of Na+ gradient dependent Ca2+ influx reveal that maximal reaction velocities of the Torpedo exchanger are attained between 15 and 20 degrees C. The energy of activation between 0 and 20 degrees C is 20,826 cal/mol. In comparison, rat brain synaptic plasma membrane Na(+)-Ca2+ exchanger reaches maximal reaction rates between 30 and 40 degrees C. Reconstitution of Torpedo or rat brain Na(+)-Ca2+ exchangers into a membrane composed of either Torpedo or brain phospholipids, does not alter the temperature dependence of the native Torpedo or rat brain Na(+)-Ca2+ exchangers; inspite of considerable differences in the composition of the fatty acyl chains that are esterified to brain and Torpedo phospholipid head groups and differences in membrane fluidity that were detected. An ATP-dependent Ca2+ pump, which is insensitive to FCCP, is also present in the same synaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号