首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

3.
Concentrations of progesterone, oxytocin and PGFM (pulmonary metabolite of PGF-2 alpha) were measured in plasma from peripheral blood samples collected from 5 fallow does every hour or 2 h for 12-h periods on Days 15-20 inclusive of the oestrous cycle (i.e. luteolysis). For 3 does that exhibited oestrus on Day 21, plasma progesterone concentrations fluctuated between 3 and 10 ng/ml on Days 15-18 inclusive. Thereafter, values declined progressively to attain minimum concentrations of less than 0.05 ng/ml on Day 20. Basal concentrations of plasma oxytocin and PGFM fluctuated between 5 and 20 pg/ml and 10 and 100 pg/ml respectively. Episodic pulses of plasma oxytocin (greater than 300 pg/ml) occurred on Days 15 and 16, whereas pulses of plasma PGFM (greater than 400 pg/ml) occurred on Days 19 and 20. There was little apparent correlation between episodic pulses of the two hormones. For 2 does that exhibited oestrus on Day 22, plasma progesterone concentrations declined to minimum values of 1.0-1.5 ng/ml by Day 20. One of these does showed very high levels of oxytocin secretion throughout the sampling period while the other showed an apparent paucity of oxytocin secretory periods. Two does hysterectomized on Day 13 of their second oestrous cycle failed to exhibit further oestrous cycles. Continual elevation of plasma progesterone concentrations (2-6 ng/ml) for an 8-month period indicated persistence of the corpus luteum after hysterectomy. It is concluded that luteolysis in fallow deer involves episodic secretion of both oxytocin and PGF-2 alpha.  相似文献   

4.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

5.
Reproductive cycles were studied in a group of tame Père David's deer hinds. The non-pregnant hind is seasonally polyoestrous and, in animals studied over 2 years, the breeding season began in early August (2 August +/- 3.3 days; s.e.m., N = 9) and ended in mid-December (18 December +/- 5.7 days; N = 8) and early January (6 January +/- 3.2 days; N = 11) in consecutive years. During the anoestrous period, plasma progesterone concentrations were low (0.2 +/- 0.01 ng/ml) or non-detectable. There was a small, transient increase in progesterone values before the onset of the first cycle of the breeding season. In daily samples taken during an oestrous cycle in which hinds were mated by a marked vasectomized stag, progesterone concentrations remained low (less than 0.5 ng/ml) for a period of about 6 days around the time of oestrus, showed a significant increase above oestrous levels by Day 4 (Day 0 = day of oestrus) and then continued to increase for 18 +/- 2.8 days to reach mean maximum luteal levels of 3.5 +/- 0.6 ng/ml. The plasma progesterone profiles from a number of animals indicated that marking of the hinds by the vasectomized stag did not occur at each ovulation during the breeding season and therefore an estimate of the cycle length could not be determined by this method. In the following year, detection of oestrus in 5 hinds was based on behavioural observations made in the absence of the stag. A total of 19 oestrous cycles with a mean length of 19.5 +/- 0.6 days was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study examines the length of the oestrous cycle in 16 Iberian red deer females assessed by means of changes in progesterone concentrations, along with the changes in the profile of this hormone. Samples were collected three occasions per week from the week after calving (15 May to 15 June) up to May of the following year. The oestrous cycle lasted 19.57+/-0.29 days (range 10-27 d) calculated in 130 oestrous cycles examined. Progesterone titres did not rise above 0.5 ng/ml in the follicular phase, except in four samples. The maximum peak in progesterone concentration during the luteal phase remained above 1 ng/ml in most cases. Twenty-five percent of the individuals studied (4 out of 16) showed an oestrous cycle lasting shorter than the mean (15.2+/-0.30 days) before the start of the reproductive season, followed by a period of sexual inactivity. The standard progesterone profile in natural oestrous cycles rose from basal levels to those above 0.5 ng/ml four days after onset of oestrus, reached a peak of 1.71+/-0.07 ng/ml and then declined to less than 0.2 ng/ml after day 20. Following the rapid decline of progesterone after day 14, the concentration remained around the baseline level of 0.1 to 0.2 ng/ml during the immediate pre- and post-ovulatory phase of the cycle.  相似文献   

7.
Investigation were carried out to study the norms of progesterone concentration in the blood serum of buffaloes during various phases of oestrous cycle. Twenty four animals (12 heifers and 12 cows) were used. The blood serum samples were stored at -20 degrees C until processed for progesterone assay. The progesterone concentrations were measured by the radioimmunoassay technique. The progesterone levels were 0.360 +/- 0.062 and 0.334 +/- 0.066 ng/ml on the day of oestrus in buffalo-heifers and buffalo-cows, respectively. The values were around 1 ng/ml till day 6, followed by a gradual increase to a peak average value of 4.888 +/- 0.399 and 5.119 +/- 0.415 ng/ml on day 15 of the cycle in heifers and cows, respectively. Thereafter, the progesterone concentration fell abruptly to a level similar to that at oestrus. The mean progesterone value a day before oestrus was 0.488 +/- 0.067 and 0.577 +/- 0.053 ng/ml in buffalo-heifers and buffalo-cows, respectively. The mean progesterone concentration of different days of the cycle (except day 16) did not differ significantly (P / -0.01) between heifers and cows.  相似文献   

8.
In Phase I of this study to enhance ovulation rate and hence litter size, gilts received 0 (sham control), 0.625, 1.25, 2.5 or 5.0 mg epostane/kg body weight on Days 10, 11 and 12 of the oestrous cycle (5 gilts/group). After epostane treatment, plasma progesterone concentrations were reduced (P less than 0.01) in a dose-related manner, % progesterone decline = 21.30 x square root of (dose) + 10.45, R2 = 0.70, but recovered to pretreatment levels by 24 h. In Phase II the effects of epostane on ovulation rate and litter size were tested at two study centres. At each centre 108 gilts were treated with the same doses of epostane as used in Phase I and the doses were given for 7 days (Days 15-21) or 12 days (Days 10-21) during the first oestrous cycle. Gilts were inseminated twice during the oestrus after treatment and were slaughtered 30 days later. Mean (+/- s.d.) ovulation rate was 16 +/- 2.7 (N = 8) and 21 +/- 4.0 (N = 61) for control and epostane-treated gilts in Centre A and 12 +/- 2.4 (N = 5) and 17 +/- 3.8 (N = 55) respectively in Centre B (P less than 0.01 for both) and was dose related (ovulation rate = 3.38 x square root of (dose) + 16.17, R2 = 0.31). The effects of 7- or 12-day epostane treatment on ovulation rate were not different (P greater than 0.05), indicating that effects of treatment after Day 14 of the oestrous cycle are most important to subsequent ovulation frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Testosterone, oestradiol and progesterone were measured in peripheral plasma during the oestrous cycle of 6 heifers. Oestradiol and progesterone results confirmed earlier reports. Concentration of testosterone on the day of oestrus was 40+/-3 pg/ml (mean+/-S.E.M.), and two peaks were detected during the cycle, one 7 days before oestrus (1809+/-603 pg/ml) and the other (78+/- 7 pg/ml) on the day before the onset of oestrus. The concentration of progesterone declined in most cases 1 day after the maximum concentration of testosterone. Betamethasone treatment in 5 heifers extended luteal function by an average of 10 days: plasma androstenedione and oestradiol concentrations were unaltered; cortisol values were depressed for at least 16 days after treatment; testosterone concentrations were lowered by 13+/-2-4% during treatment, and except in one heifer the peak on Day -7 was abolished.  相似文献   

10.
Four trials were completed to study the effects of a single intramuscular injection of 5 μg of an agonist of gonadotrophin releasing hormone (Hoe 766) on plasma concentrations of LH and progesterone, and on oestrous cycle length in normally cycling dairy cows.The first trial (four cows) showed that a mid-cycle injection of Hoe 766 temporarily increases plasma LH from less than 5 ng/ml to over 20 ng/ml within 2.5 h. Average plasma progesterone concentrations ranged from 4.8 to 7.0 ng/ml compared to 3.3 ng/ml in the control animal.The second trial (22 cows) showed that an injection of Hoe 766 on Cycle Day 3, 6 or 9 (Oestrus = Cycle Day 0) increased average plasma progesterone concentrations during Cycle Days 13, 14 and 15 by 1.2 ng/ml. Each of three cows injected on Cycle Day 16 maintained plasma concentrations above 3.9 ng/ml until Cycle Day 19 and corpus luteum (CL) size was maintained until Cycle Day 21. Except for the group of cows injected on Cycle Day 3, all other groups had temporarily reduced concentrations of plasma progesterone when sampled 24 h after Hoe 766 administration.The third trial (216 cows) showed that a single injection of Hoe 766 made between Cycle Day 1 and 10 did not alter oestrous cycle length (21.5 vs 21.3 days). In contrast, in the fourth trial (371 cows), a single injection of Hoe 766 between Cycle Days 12 to 16 altered the distribution of cycle lengths of 17–29 days, the average cycle length and the incidence of ovulation without detected oestrus. Compared to matched control cows, fewer Hoe 766-treated cows were detected in oestrus (73.9% vs 90%), or had cycle lengths of less than 20 days (4.7% vs 22.2%). These effects were most pronounced among cows injected on Cycle Day 16 when only 51.7% were detected in oestrus and their average cycle length was 24.1 days.These effects were not due to the formation of a secondary CL. Rather, the injection of Hoe 766 stimulated CL function and appeared to prevent or delay normal luteolysis when administered from Cycle Day 12.  相似文献   

11.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

12.
Jugular vein blood was collected daily from four mature ewes throughout anoestrus and the first oestrous cycle of the breeding season until 4 days after the second oestrus. The levels of oestrogen, progesterone and LH were determined by radioimmunoassay. There were fluctuations in the LH level throughout most of the observed anoestrous period with a mean plus or minus S.E. value of 2-3 plus or minus 0-9 ng/ml. High LH values of 20-0, 41-2 and 137-5 ng/ml were observed in three ewes on Day - 24 of anoestrus. A brief minor rise in progesterone level was also observed around this period. Progesterone levels were consistently low (0.11 plus or minus 0-01 ng/ml) before Day - 25 of anoestrus. A major rise occurred on Day - 12 of anoestrous and this was followed by patterns similar to those that have been previously reported for the oestrous cycle of the ewe. Random fluctuations of oestrogens deviating from a mean level of 4-40 plus or minus 0-1 pg/ml were observed during anoestrus and the mean level during the period from the first to the second oestrus was 5-2 plus or minus 0-3 pg/ml. A well-defined peak of 13-3 plus or minus 0-7 pg/ml was seen in all ewes on the day of the second oestrus. Results of the present study suggest that episodic releases of LH occur during anoestrus and periods of low luteal activity. The fluctuations in LH levels, as observed during the period of low luteal activity, i.e. before Day - 25 of anoestrus, were less pronounced during the periods of high luteal activity. The view that luteal activity precedes the first behavioural oestrus of the breeding season is supported.  相似文献   

13.
Concentrations of oxytocin were measured in corpora lutea obtained from heifers throughout the oestrous cycle and first 30 days of pregnancy. Values were low during the first 3 days of the cycle (less than 250 ng/g tissue), increasing to 1312 ng/g by Day 4. Values then further increased up to a maximum of 2344 ng/g on Day 12. Concentrations were similar in cyclic and pregnant animals throughout the midluteal phase and were maintained at approximately 1500 ng/g until the 18th (cyclic cows) or 19th (pregnant cows) day after oestrus, when they were again low. Values subsequently remained less than 250 ng/g in pregnant cattle. Concentrations of oxytocin in jugular venous plasma of cyclic (n = 5) and pregnant (n = 4) cows were measured in samples collected every 15 min for 8 h on Days 14, 16, 18 and 19 after oestrus. There were no significant differences in mean concentrations (range: 2.5-4.7 pg/ml) or in the number, frequency or area under the curve of episodes between either cyclic and pregnant animals, or between days. Mean basal concentrations were higher on Day 16 than on Day 14 (P less than 0.05), values on Days 18 and 19 being intermediate. These findings suggest that the corpus luteum contains a finite amount of releasable oxytocin, which is exhausted by Day 18-19 after oestrus, whether or not pregnancy occurs, and that there is no further accumulation of oxytocin in the animal during early pregnancy. The contribution of luteal oxytocin to jugular venous concentrations appears to be less than in sheep, in which values in the jugular vein closely parallel those within the corpus luteum.  相似文献   

14.
The effect of fasting during oestrous cycle on the occurrence of oestrous and concentration of leptin and steroid hormones was investigated in goats. Sixteen Ardi goats of 10-12 month of age were split into two groups (control and fasting). Oestrous was synchronized with intravaginal progesterone sponges and detected 24h after sponge removal. Blood samples were collected at the days 5, 10, 15 of each cycle. Fasting of mature goats twice for 4 days starting on day 10 of two successive oestrous cycles inhibited oestrous behaviour and resulted in reduced concentration of leptin, progesterone and testosterone with different timing. Day 5 of the second cycle showed significant decrease in the plasma level of leptin (1.6+/-0.15 ng/ml) and progesterone (1.6+/-0.1 ng/ml) as compared to control group (3.2+/-0.15 ng/ml and 4.1+/-0.2 ng/ml, respectively). Testosterone started to decrease from day 10 of the second cycle (35.0+/-12.0 pg/ml) as compared to control group (65.0+/-15.0 pg/ml); the decrease in this hormone was significant in day 15 of the second cycle (65.0+/-16.0 pg/ml) as compared to the control (320.0+/-50.0 pg/ml). These data suggest that fasting-induced inadequate corpus luteum function, hence, lowering progesterone plasma level may partly be more leptin-dependent than the following decrease in plasma level of testosterone.  相似文献   

15.
Ovarian and luteal blood flow rates were studied using radioactive microspheres in guinea-pigs between Day 6 of the oestrous cycle and Day 1 of the following cycle. Peripheral plasma progesterone levels were measured by radioimmunoassay on the same days of the oestrous cycle. Ovarian blood flow was greatest between Days 9 and 12 and had fallen by Day 16 both in absolute (ml . min-1) and relative (ml.min-1.g-1) terms. Luteal weight and blood flow were also greatest between Days 9 and 12 and had fallen sharply by Day 16. The highest mean (+/- s.d.) luteal flows measured were 0.10 +/- 0.04 ml.min-1 per corpus luteum, and 24.26 +/- 9.3 ml.min-1.g-1 luteal tissue on Day 10 of the cycle. Mean peripheral plasma progesterone levels reached a maximum of 3.66 +/- 1.1 ng/ml at Day 12 of the cycle and fell thereafter, reaching 0.74 +/- 0.5 ng/ml by Day 1 of the following cycle. Plasma progesterone levels declined significantly between Days 12 and 14 of the cycle, whereas no significant drop in luteal blood flow was demonstrable until after Day 14. These data do not support the idea that declining luteal blood flow is an initiating mechanism in luteal regression in the guinea-pig.  相似文献   

16.
Hypoprolactinaemia was induced by bromocriptine (CB154; 100 mg/day) which decreased circulating prolactin by 40% (P less than 0.06), but did not affect conceptus survival at Day 25 when administered on Days 10-16 when compared to saline:ethanol-treated control gilts. Bromocriptine or vehicle was administered to cyclic gilts on Days 10-11, oestradiol valerate was injected on Day 11 and uterine flushings were collected on Day 12. Total recoverable protein and uteroferrin in uterine flushings were not affected by treatment. However, leucine aminopeptidase activity (P less than 0.02) and total recoverable Ca2+, Na+, K+ and Cl- (P less than 0.05) were decreased in uterine flushings of gilts that received bromocriptine, suggesting that hypoprolactinaemia decreased general secretory activity of the endometrial epithelium and modulated ionic changes, respectively, in the uterine environment of pigs. Subcutaneous administration of pig prolactin (1 mg/12 h) increased (P less than 0.001) serum prolactin 4.5-fold. The interaction between hyperprolactinaemia and progesterone, without oestrogen, on components of uterine flushings were determined using gilts that received progesterone (200 mg/day) and prolactin or saline on Days 4-14 after ovariectomy on Day 4. On Day 15, there were no differences (P greater than 0.05) in any of the uterine secretory components measured. Hyperprolactinaemia (1 mg pig prolactin on Days 6-11) enhanced overall uterine secretory response on Day 12 to oestradiol (5 mg) administered on Day 11 compared to gilts that received 1 ml saline on Days 6-11 of the oestrous cycle. Total recoverable protein and leucine aminopeptidase activity were greater (P less than 0.05) for oestradiol-treated gilts, but effects of prolactin were not significant. Total recoverable glucose (P less than 0.01), PGF-2 alpha (P less than 0.02), uteroferrin (P less than 0.01) and specific activity of uteroferrin (P less than 0.001) were increased by prolactin and oestradiol, but not oestradiol alone. Calcium (P less than 0.05), chloride (P less than 0.05) and potassium (P less than 0.01) were increased in response to oestradiol. These results indicate an interaction between oestradiol and prolactin, but not progesterone and prolactin, which enhances secretion of some products of the pig uterine endometrium.  相似文献   

17.
This study was undertaken to characterize uterine immune factors involved in the establishment of pregnancy in gilts. Thirty crossbred Yorkshire-Landrace gilts of similar age and weight were observed twice a day for oestrous behaviour with intact boars. On the day of first standing oestrus (Day 0) and 12h later, 15 gilts were inseminated with pooled semen from Duroc boars of proven fertility. Pregnant gilts were slaughtered either on Days 10, 15 or 25 of gestation (n=5 per day). The other 15 gilts were not inseminated and were slaughtered on either Days 0, 10 or 15 of the oestrous cycle (n=5 per day). Immediately after slaughter, endometrial tissue samples from the mesometrial side were removed for gene expression using RNase protection assay and in situ hybridization methodologies. The other uterine horn was flushed with 20 ml of PBS to collect the uterine fluid. In pregnant gilts, endometrial interleukin (IL)-6 mRNA expression was higher on Day 15 than on Days 10 and 25 (P<0.01 and P<0.1, respectively). On Day 15, IL-6 expression was also significantly higher (P<0.01) in pregnant gilts than in cyclic gilts. In both pregnant and cyclic gilts, transforming growth factor (TGF)-beta2 in uterine fluid was significantly higher (P<0.0001) on Day 15 than on Day 10. At the gene expression level, TGF-beta2 also increased between Days 10 and 15 in both cyclic and pregnant gilts but differences were not significant. On Day 15, concentrations of interferon-gamma and prostaglandin E(2) (PGE(2)) in uterine fluid were markedly higher (P<0.001) in pregnant gilts than in cyclic gilts, whereas the total amount of TGF-beta2 in uterine fluid and its endometrial expression were approximately 70% higher although this increase was not significant. Finally, tumour-necrosis factor-alpha and granulocyte-macrophage/colony-stimulating factor mRNA expressions were undetectable in all endometrial samples. In conclusion, production and/or expression of uterine TGF-beta2, IL-6 and PGE(2) increased during the embryonic attachment period and are coincidental with embryonic interferon-gamma production.  相似文献   

18.
Two experiments were designed to investigate release patterns of oxytocin into plasma during oestrus and the early luteal phase. In Exp. 1, blood samples were collected from 5 ewes every 30 min for 10 h during 6 days around oestrus and the early luteal phase. During oestrus concentrations of oxytocin were generally low (1.27 +/- 0.54 pg/ml; mean +/- s.d.) but with occasional pulses up to 6 pg/ml. By Day 5 mean basal concentrations had risen to 4.5 +/- 2.1 pg/ml with a fluctuating release pattern. In Exp. 2, a method was developed for continuous blood sampling from conscious, unrestrained ewes. On the predicted day of oestrus following an untreated oestrous cycle, 8-ml blood samples were collected every minute for two 35-min periods (8 ewes: 16 sampling periods). For 6 ewes a ram was introduced to the pen for part of this time, and resulting behaviour was recorded. Additional blood samples were assayed for LH and progesterone to determine the stage of the cycle. Overall mean oxytocin concentrations ranged from 1.5 +/- 0.53 to 6.8 +/- 5.25 pg/ml in different animals. Ewes which were both in oestrus and exposed to the ram showed a pulsatile oxytocin release pattern consisting of low baseline concentrations with short-duration pulses superimposed (duration 1-4 min; amplitude 2.5-31.7 pg/ml; frequency 3.18/h). Coitus was not temporally associated with pulsatile release. However, the importance of the presence of the ram was indicated by total separation of 2 oestrous ewes from the ram until after experimentation. In these animals only 1 pulse of oxytocin was detected in 2.7 h of sampling. It is concluded that, although mean oxytocin concentrations at oestrus were low, short duration pulses were released into the plasma at this time. This effect may be dependent on the presence of a ram.  相似文献   

19.
Small samples of backfat were taken daily during one oestrous cycle and more frequently after ovariectomy from 12 gilts by means of a simple biopsy technique and the levels of progesterone were determined. Compared to the levels of progesterone in peripheral plasma changes in backfat levels during the oestrous cycle were delayed by 1-2 days. Maximal levels with 89.7 +/- 9.2 (mean +/- s.e.m) ng progesterone/100 mg backfat were recorded on Day 15 of the oestrous cycle. It was estimated that, on this day, a total amount of about 36 mg progesterone is stored in the adipose tissue, which is approximately 200 times that present in total blood and corresponds to the daily production of the corpora lutea of the sow on Day 11. Initial half-life of progesterone in backfat after ovariectomy was estimated to be about 34 h compared to an initial half-life of plasma progesterone of about 120 min. The exact calculation of half-lives was, however, confounded by an obvious effect of anaesthesia or surgery on progesterone levels. Changes in backfat or plasma progesterone concentrations were not affected by the fat-to-lean ratio of the gilts. Fat progesterone levels determined in 44 additional pregnant and non-pregnant sows 17 or 20 days after mating indicated that reliable diagnosis of non-pregnant sows was possible on Day 20. It is concluded that the endocrinology of the oestrous cycle in pigs is related to the enormous storage of progesterone in the fat.  相似文献   

20.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号