首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatography of glutaraldehyde-fixed skim-milk on controlled-pore glass (CPG-10, 300 nm) gave three micellar fractions whose averaged diameters, measured by electron microscopy, decreased progressively with increasing elution volume. Casein micelles with diameters up to 680 nm were detected. The casein composition of the same fractions from unfixed skim-milk was determined. As the fraction elution volume increased, κ-casein varied from 7.7 to 11.4% of total casein, giving αs/κ ratios of 6.1, 4.7 and 3.3.A plot of κ-casein content versus micelle surface-to-volume ratio for skim-milk and the column fractions approximated to a straight line. Re-calculation of the published results from two other studies also gave linear relationships between κ-casein content and surface area for artificial micelles. The three regression lines thus obtained had small intercepts. It was concluded that the data indicated the same fundamental structure for casein micelles, with a pre-dominant surface location for κ-casein, whether the micelles are natural or artificial and whether they are aggregated or by Ca2+ alone oy Ca2+ together with calcium phosphate-citrate complex.  相似文献   

2.
Artificial casein micelles were prepared by adding 30 mM calcium, 22 mM phosphate and 10 mM citrate to sodium caseinate solutions, and the content of the casein aggregates cross-linked by colloidal calcium phosphate was determined by high-performance gel chromatography on a TSK-GEL G4000SW column in the presence of 6 M urea. The content of the casein aggregates cross-linked by colloidal calcium phosphate in artificial whole casein micelles was 48% of total casein, and their relative casein composition determined by high-performance ion-exchange chromatography was 53.1% for alpha s1-casein, 15.8% for alpha s2-casein, 31.1% for beta-casein and 0% for kappa-casein. The order of cross-linking by colloidal calcium phosphate agreed with that of the ester phosphate content of casein constituents. The content of the casein aggregates cross-linked by colloidal calcium phosphate was higher in alpha s1-kappa-casein micelles than in beta-kappa-casein micelles. kappa- and gamma-caseins and dephosphorylated alpha s1-casein were not cross-linked by colloidal calcium phosphate. Although kappa-casein was not cross-linked, chemically phosphorylated kappa-casein, of which the average phosphate content was 8.5 per molecule, was cross-linked. It is concluded that caseins are cross-linked through their ester phosphate groups by colloidal calcium phosphate.  相似文献   

3.
Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.  相似文献   

4.
Casein of cynomolgus monkey was compared with those from human and bovine milk. Cynomolgus monkey casein showed similar electrophoretical patterns to those of human casein on Disc- and SDS-electrophoresis. It consisted of beta- and kappa-casein-like components. The component corresponding to bovine alpha s1-casein was not detected. The beta-casein-like fraction of cynomolgus monkey showed 9 bands on Disc-PAGE. These were suggested to be the same protein binding different levels of phosphorus by dephosphorylation experiment using an acid phosphatase. The kappa-casein-like component of cynomolgus monkey was highly glycosylated (about 50% carbohydrate) similarly as human kappa-casein and the constituent carbohydrates were same as those detected in human kappa-casein (galactose, fucose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acid). Amino acid composition of cynomolgus monkey kappa-casein bore a resemblance to those of both human and bovine kappa-caseins. Amino acid composition of cynomolgus monkey beta-casein was also similar to those of human and bovine beta-caseins.  相似文献   

5.
Isolation and properties of human kappa-casein   总被引:1,自引:0,他引:1  
Human kappa-casein was isolated from human whole casein by gel filtration with Sephadex G-200 and hydroxylapatite chromatography in the presence of sodium dodecyl sulfate (SDS). The kappa-casein was calcium-insensitive and did stabilize human beta-casein and bovine alpha s1-casein against precipitation by calcium ions. Formation of micelles from human beta- and kappa-caseins, and calcium ions was confirmed by electron microscopic observation. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), a single band was obtained. The formation of para-kappa-caseins by chymosin was confirmed by SDS-PAGE. Two para-kappa-caseins with apparent molecular weights of 13,000 and 11,000 appeared. The molecular weight of intact human kappa-casein was estimated to be approximately 33,000. The human kappa-casein contained about 40% carbohydrate (15% galactose, 3% fucose, 15% hexosamines, and 5% sialic acid) and 0.10% (1 mol/mol) phosphorus. Its amino acid composition was similar to that of bovine kappa-casein except for serine, glutamic acid, and lysine contents.  相似文献   

6.
Casein micelles have been separated from skim milk by chromatography on CPG-10 3000 glass beads. Fractionation of the micelles according to size has been demonstrated. Polyacrylamide gel electrophoresis of urea treated micelles reveals that different relative amounts of the major casein components occur in the various micelle fractions. No discernible dissociation of the micelles into monomeric caseins has been observed.  相似文献   

7.
The location of the glycosylated part of kappa-casein in bovine casein micelles was investigated using gold particles (6 nm in diameter) labelled with Ricinus communis lectin and Limulus polyphemus lectin. The pattern of marking of thin sections of micelles was similar with both lectins. Glycosylated kappa-casein was distributed uniformly throughout most micelles of all sizes. Peripheral location of glycosylated kappa-casein was observed only occasionally in some of the largest micelles. Quantitative data indicated that the concentration of the glycosylated protein was constant in micelles of increasing sizes. As larger micelles contain less total kappa-casein than smaller ones, these data indicated that a greater proportion of their kappa-casein is glycosylated. These results support models for casein micelle structure where kappa-casein is distributed throughout the micelles. They do not agree with "coat-core" structures.  相似文献   

8.
Bovine casein micelles were fractionated on controlled pore granule (CPG-10/3000) chromatography by size and the chemical properties of the fractionated micelles were compared. The results indicated the presence of two types of micelles distinguishable as large and small micelles. In skim milk, 72.7% of casein was calculated to be in the form of small micelles, 13.6% in the form of large micelles and 13.8% in non-micellar casein form.

The αs1-casein content decreased, but β- and κ-casein content increased as the micelle size became smaller. κ-Casein in large micelles had a much higher sialic acid content than in small micelles. It was found that this difference in sialic acid content was due to the presence of non-glycosylated κ-casein in small micelles. In large micelles, non-glycosylated κ-casein was almost undetectable.

The addition of wheat germ lectin to micelles resulted in the formation of aggregates through intermicellar bridges between the carbohydrate chains of κ-casein located on the surface of the micelles. Both large and small micelles formed aggregates after the addition of wheat germ lectin. Large micelles were more sensitive to wheat germ lectin than small ones.  相似文献   

9.
C L Brooks 《FEBS letters》1989,243(2):385-388
Two species of casein kinase from lactating bovine mammary gland have been identified; a Ca2+- and CM-independent casein kinase and a Ca2+- and CM-dependent casein kinase. The Ca2+- and CM-independent casein kinase phosphorylates previously dephosphorylated alpha s1-, beta- or kappa-casein while the Ca2+- and CM-dependent casein kinase prefers previously dephosphorylated beta- or kappa-casein as substrates. Two activities are indicated by their substrate specificity, sensitivity to Ca2+ and CM, pH maxima, and differential solubilization by anionic detergents. The presence of a regulated casein kinase in the lactating mammary gland suggests that casein phosphorylation may be a regulator of micelle formation or secretion.  相似文献   

10.
Thorn DC  Ecroyd H  Sunde M  Poon S  Carver JA 《Biochemistry》2008,47(12):3926-3936
The calcified proteinaceous deposits, or corpora amylacea, of bovine mammary tissue often comprise a network of amyloid fibrils, the origins of which have not been fully elucidated. Here, we demonstrate by transmission electron microscopy, dye binding assays, and X-ray fiber diffraction that bovine milk alpha s2-casein, a protein synthesized and secreted by mammary epithelial cells, readily forms fibrils in vitro. As a component of whole alpha s-casein, alpha s2-casein was separated from alpha s1-casein under nonreducing conditions via cation-exchange chromatography. Upon incubation at neutral pH and 37 degrees C, the spherical particles typical of alpha s2-casein rapidly converted to twisted, ribbon-like fibrils approximately 12 nm in diameter, which occasionally formed loop structures. Despite their irregular morphology, these fibrils possessed a beta-sheet core structure and the ability to bind amyloidophilic dyes such as thioflavin T. Fibril formation was optimal at pH 6.5-6.7 and was promoted by higher incubation temperatures. Interestingly, the protein appeared to be less prone to fibril formation upon disulfide bond reduction with dithiothreitol. Thus, alpha s2-casein is particularly susceptible to fibril formation under physiological conditions. However, our findings indicate that alpha s2-casein fibril formation is potently inhibited by its natural counterpart, alpha s1-casein, while is only partially inhibited by beta-casein. These findings highlight the inherent propensity of casein proteins to form amyloid fibrils and the importance of casein-casein interactions in preventing such fibril formation in vivo.  相似文献   

11.
Fast protein liquid chromatography (FPLC) of the kappa-casein from bovine casein micelles of different sizes is used to demonstrate that the proportions of glycosylated and non-glycosylated forms of kappa-casein do not vary with micellar size. The results suggest that glycosylated kappa-casein is distributed similarly to unglycosylated kappa-casein within the micellar structure.  相似文献   

12.
Summary The location of the glycosylated part of κ-casein in bovine casein micelles was investigated using gold particles (6 nm in diameter) labelled withRicinus communis lectin andLimulus polyphemus lectin. The pattern of marking of thin sections of micelles was similar with both lectins. Glycosylated κ-casein was distributed uniformly throughout most micelles of all sizes. Peripheral location of glycosylated κ-casein was observed only occasionally in some of the largest micelles. Quantitative data indicated that the concentration of the glycosylated protein was constant in micelles of increasing sizes. As larger micelles contain less total κ-casein than smaller ones, these data indicated that a greater proportion of their κ-casein is glycosylated. These results support models for casein micelle structure where κ-casein is distributed throughout the micelles. They do not agree with “coat-core” structures.  相似文献   

13.
A method was developed to distinguish between genotypic variants B and C of bovine alpha s1-casein, using the allele-specific polymerase chain reaction (ASPCR). The alpha s1-casein genotype determined for 17 Jersey cows by the ASPCR method was confirmed by typing the alpha s1-casein milk proteins on isoelectric focusing gels. Using the ASPCR method described, rapid analysis of the alpha s1-casein genotype of bulls is now possible. In addition, kappa-casein genotypes can be determined from the same PCR reaction.  相似文献   

14.
1. In rat milk, casein exists as particles of 77 nm mean diameter, similar in appearance to the casein micelles in the milk of other species. 2. The heterogeneity of rat casein was investigated by polyacrylamide gel electrophoresis and by chromatography on DEAE-cellulose, both in the presence of 8 M-urea. 3. The chromatography yielded two fractions, D2 and D4. 4. In chemical composition, D2 resembles the kappa-caseins of other species, while D4 resembles the alpha 5-caseins of other species. 5. D2 is soluble in 80 mM-CaCl2 at 37 degrees C, but D4 is insoluble under these conditions. 6. In 80 mM-CaCl2 at 37 degrees C, D2 prevents the precipitation of D4 by the formation of particles similar to those found in rat milk.  相似文献   

15.
A Ca2+- and calmodulin-dependent casein kinase specific for dephosphorylated bovine kappa-casein was identified in a microsomal fraction of mammary acini prepared from rats in late lactation. This phosphorylation has an absolute requirement for Mg2+ for either the basal or the Ca2+- and calmodulin-dependent activity. One-half of the maximal stimulation is achieved at a calmodulin concentration of 204nM in the presence of Ca2+. The Ca2+- and calmodulin-dependent kinase activity (but not the basal activity) is inhibited by trifluoperazine. The casein kinase is associated with a microsomal fraction enriched in markers for plasma membrane and Golgi (5'-nucleotidase and galactosyltransferase respectively). The activity of this casein kinase remains relatively constant throughout lactation, but declines dramatically in 24h when rats are removed from their pups. This activity may represent the physiological activity responsible in part or whole for kappa-casein phosphorylation occurring before micelle formation and milk secretion.  相似文献   

16.
Two distinct domains with antibacterial activity were isolated from a peptic hydrolysate of bovine alpha(s2)-casein. The digested alpha(s2)-casein was fractionated by cation-exchange chromatography, after which the peptides in the two active fractions obtained were separated by high-performance liquid chromatography and sequenced by electrospray-ionization tandem mass spectrometry. The major component in each active fraction, f(183-207) and f(164-179), was further purified and the antibacterial activity of these components was tested against several microorganisms. Depending on the target bacterial strain, these peptides exhibited minimum inhibitory concentrations between 8 and 99 microM. Peptide f(183-207) exhibited a consistently higher antibacterial activity than f(164-179), although both peptides showed a comparable hemolytic effect. A method of in situ enzymatic hydrolysis on a cation-exchange membrane to obtain a fraction enriched in the most active antibacterial domain is presented. The antibacterial and hemolytic activities are discussed in relation to the structure and hydrophobicity of the peptides.  相似文献   

17.
κ-casein A was fractionated into 9 subcomponents, all of which were identified as κ-casein from immunological analyses. The microheterogeneity of the subcomponents was explained by stepwise increase of their carbohydrate contents (0~4mol/mol of GalNAc, and 0~8mol/mol of NANA). The micelle-stabilizing ability of κ-casein subcomponents increased with the increase of their carbohydrate contents: the carbohydrate rich subcomponent 7 possessed twice the stabilizing ability of the carbohydrate free subcomponent 1. The sensitivity of synthetic casein micelle composed of κ-casein subcomponents and αsl-casein to the wheat germ lectin-induced aggregation also increased with the increase of their NANA contents.  相似文献   

18.
Casein is used as an additive in binders or paints and as such exhibits unique properties which might be based on the properties of certain subproteins in the complex whole casein mixture. Therefore, the separation of whole casein (CN) from cow milk was performed on a gram scale in order to yield sufficient amounts of the protein subfractions α-, β-, and κ-casein for further testing utilizing fast protein liquid chromatography (FPLC) and preceding enrichment in the case of κ-casein. Construction chemical grade casein, which differs in quality from dairy grade casein, was used for separation because of our interest in the proteins responsible for plastification of cementitious systems such as mortar. The solubilized proteins were separated chromatographically via ion exchange chromatography (IEX) and the subsequently desalted protein fractions were tested for purity by isoelectric focusing (IEF).  相似文献   

19.
Nucleotide sequences of bovine alpha S1- and kappa-casein cDNAs   总被引:8,自引:5,他引:3       下载免费PDF全文
The nucleotide sequences corresponding to bovine alpha S1- and kappa-casein mRNAs are presented. An unusual alpha S1-casein cDNA has been characterised whose 5' end commences upstream from its putative TATA box. The alpha S1-casein mRNA is compared to rat alpha-casein mRNA and two components of divergence are identified. Firstly, the two sequences have diverged at a high point mutation rate and the rate of amino acid replacement by this mechanism is at least as great as the rate of divergence of any other part of the mRNAs. Secondly, the protein coding sequence has been subjected to several insertion/deletion events, one of which may be an example of exon shuffling . The kappa-casein mRNA sequence verifies the proposition that it has arisen from a different ancestral gene to the other caseins.  相似文献   

20.
Proteomic tools to characterize the protein fraction of Equidae milk   总被引:1,自引:0,他引:1  
Miranda G  Mahé MF  Leroux C  Martin P 《Proteomics》2004,4(8):2496-2509
The principal components of the protein fraction in pony mare's milk have been successfully identified and partially characterized using proteomic tools. Skimmed pony mare's milk was fractionated by either reversed phase-high-performance liquid chromatography (RP-HPLC) on a C4 column or a bi-dimensional separation technique coupling RP-HPLC in the first dimension and sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) in the second dimension (two-dimensional RP-HPLC/SDS-PAGE). The fractions thus obtained were analyzed by Edman N-terminal microsequencing and mass determination, with or without tryptic digestion, on a matrix-assisted laser desorption/ionization-time of flight spectrometer. Based on the sequence and molecular mass information obtained, identifications were achieved through a protein database search using homology or pattern research algorithms. This methodological approach was shown to be rapid, efficient and reliable in identifying the principal proteins in pony mare's milk. kappa-, alpha(s1)-, alpha(s2)-, and beta-casein, lysozyme C, alpha-lactalbumin and beta-lactoglobulin I and II were thus identified. alpha(s1) and beta-caseins displayed polymorphic patterns, probably due to alternative splicing processes leading to casual exon skipping events involving exons 7 and 14 in alpha(s1)-casein and exon 5 in beta-casein. Edman N-terminal microsequencing over 35 amino acid residues, for pony alpha(s1)-casein, clearly demonstrated the occurrence, in Equidae, of a splicing pattern similar to that reported in rodents, characterized by the constitutive outsplicing of exon 5. Pony mare's milk SDS-PAGE and RP-HPLC patterns were compared with those obtained for other milks (cow, goat and human), as were the relative levels of caseins and major whey proteins in these milks. Our results provide further evidence to support the notion that Equidae milk is closer to human breast milk than milk from bovine and caprine with respect to the casein and lysozyme C contents and casein/whey proteins ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号