首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察黄连素(Berberine,BBR)预处理对6-羟基多巴胺(6-hydroxydopamine,6-OHDA)诱导的PC12细胞的影响,并探讨二型超氧化物歧化酶(Mn-SOD,SOD2)是否介导了BBR的保护作用。方法:将PC12细胞分为5组,分别为正常培养的对照组(Control)、25μM的6-OHDA损伤组、1μM的BBR预处理24 h组(BBR+6-OHDA)、SOD2-siRNA干扰组(SOD2-siRNA+BBR+6-OHDA)和乱序siRNA处理组(SC-siRNA+BBR+6-OHDA),孵育24 h后,采用噻唑蓝法(Methylthiazolyldiphenyl-tetrazolium bromide,MTT)检测细胞活力,试剂盒检测培养基乳酸脱氢酶(Lactic Dehydrogenase,LDH)、细胞内活性氧(Reactive Oxygen Species,ROS)、还原型谷胱甘肽(Glutathione,GSH)和过氧化氢酶(Catalase,CAT)的含量,使用流式细胞仪检测凋亡率,Western blot检测SOD2和凋亡蛋白Cleaved caspase-3的表达。结果:与Control组相比,6-OHDA诱导PC12细胞24 h后,细胞活力显著降低,SOD2表达、GSH和CAT的含量明显减少,培养基上清液LDH活力、细胞凋亡率、Cleaved caspase-3表达和ROS水平显著增加(P<0.05),而BBR预处理可显著恢复6-OHDA诱导的PC12细胞活力、SOD2表达、GSH和CAT水平,并降低细胞凋亡率、凋亡蛋白表达和细胞ROS水平(P<0.05),而SOD2-siRNA显著逆转了BBR预处理产生的上述保护作用(P<0.05),SC-siRNA则未对BBR预处理产生的上述作用造成明显影响(P>0.05)。结论:黄连素预处理可减轻6-OHDA诱导的PC12细胞损伤,而SOD2分子介导了BBR预处理对暴露于6-OHDA的PC12细胞的保护作用。  相似文献   

2.
Ginkgo biloba extract (EGb), a potent antioxidant and monoamine oxidase B (MAO-B) inhibitor, was evaluated for its anti-parkinsonian effects in a 6-hydroxydopamine (6-OHDA) rat model of the disease. Rats were treated with 50, 100, and 150 mg/kg EGb for 3 weeks. On day 21, 2 microL 6-OHDA (10 microg in 0.1% ascorbic acid saline) was injected into the right striatum, while the sham-operated group received 2 microL of vehicle. Three weeks after 6-OHDA injection, rats were tested for rotational behaviour, locomotor activity, and muscular coordination. After 6 weeks, they were killed to estimate the generation of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content, to measure activities of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and to quantify catecholamines, dopamine (DA) D2 receptor binding, and tyrosine hydroxylase-immunoreactive (TH-IR) fibre density. The increase in drug-induced rotations and deficits in locomotor activity and muscular coordination due to 6-OHDA injections were significantly and dose-dependently restored by EGb. The lesion was followed by an increased generation of TBARS and significant depletion of GSH content in substantia nigra, which was gradually restored with EGb treatment. EGb also dose-dependently restored the activities of glutathione-dependent enzymes, catalase, and SOD in striatum, which had reduced significantly by lesioning. A significant decrease in the level of DA and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, both of which were significantly recovered following EGb treatment. Finally, all of these results were exhibited by an increase in the density of TH-IR fibers in the ipsilateral substantia nigra of the lesioned group following treatment with EGb; the lesioning had induced almost a complete loss of TH-IR fibers. Considering our behavioural studies, biochemical analysis, and immunohistochemical observation, we conclude that EGb can be used as a therapeutic approach to check the neuronal loss following parkinsonism.  相似文献   

3.
Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.  相似文献   

4.
Free Radical-Generated Neurotoxicity of 6-Hydroxydopamine   总被引:14,自引:3,他引:11  
Abstract: Albino rats were lesioned bilaterally with 6-hydroxydopamine (6-OHDA) hydrochloride (4 µg/µl, dissolved in saline with 0.1% ascorbic acid) into the striatum, and 72 h after the injection, levels of lipid peroxidation, GSH, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), lipid class, membrane fluidity, and intracellular calcium concentrations were studied and the results were compared with those in the sham-operated controls. The malonaldialdehyde level and the level of conjugated dienes were increased by 43 and 40%, respectively, in corpus striatum, and GSH, SOD, and GSH-Px levels were decreased (24–30%) following 6-OHDA treatment. Total phospholipid content was also decreased (18%), whereas cholesterol content remained unaffected. Among the different phospholipids only phosphatidylcholine and phosphatidylinositol were decreased in level. Membrane fluidity was decreased (23%), whereas the intracellular calcium concentration was elevated (100%) in corpus striatum compared with control rats. The results suggest that these alterations in membrane-related events by 6-OHDA could be due to free radical generation.  相似文献   

5.
Abstract: Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. l -Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, l -deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation.  相似文献   

6.
Natural antioxidants have shown a remarkable reduction in oxidative stress due to excess formation of reactive oxygen species by enhancing antioxidant mechanism in the neurodegenerative disorders. Sesame seed oil (SO) is one of the most important edible oil in India as well as in Asian countries and has potent antioxidant properties thus the present study evaluated the neuroprotective effect of SO by using 6-Hydroxydopamine (6-OHDA)-induced Parkinson’s disease model in mice. The mice were fed an SO mix diet for 15 days and then 6-OHDA was injected into the right striatum of mice brain. Three weeks after 6-OHDA infusion, mice were sacrificed and the striatum was removed. The neuroprotective role of SO on the activities of antioxidant and non-antioxidant enzymes such as glutathione reductase (GR), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT) and content of glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) were studied in the striatum. The activities of all the above-mentioned enzymes decreased significantly in 6-OHDA group (Lesioned) when compared with Sham. The pretreatment of SO on antioxidant mechanism and dopamine level in the brain had shown some significant improvement in Lesion+SO (L+SO) group when compared with Lesioned group. However, NADPH oxidase subunit, Nox2 and inflammatory stimulator Cox2 expression was increased as well as antioxidant MnSOD level was decreased in Lesioned group while SO showed the inhibitory effect on the activation of Nox2 and Cox2 and restored MnSOD expression in L+SO group. Increased tyrosine hydroxylase (TH) expression in substantia nigra as well as dopamine and its metabolite DOPAC level in L+SO group also support our findings that SO may inhibit activation of NADPH oxidase dependent inflammatory mechanism due to 6-OHDA induced neurotoxicity in mice.  相似文献   

7.
Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50)?=?200?±?15?nM) and state 3 respiration (IC(50)?=?192?±?17?nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50)?=?100?±?9?μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity.  相似文献   

8.
The aim of this study was to investigate the effects of vitamin E (alpha-tocopherol) and 17β-estradiol (E(2)) supplementation on malondialdehyde (MDA), glutathione (GSH), vitamin A, beta carotene, selenium-dependent glutathione peroxidase (GSH-Px), zinc-dependent superoxide dismutase (SOD), and copper/zinc-dependent catalase (CAT) values in the kidney of ovariectomized (OVX) diabetic rats. Forty-two female rats were randomly divided into seven equal groups as follows: group I, control; group II, OVX; group III, OVX+E(2); group IV, OVX+E(2)+alpha-tocopherol; group V, OVX+diabetic; group VI, OVX+diabetic+E(2); and group VII, OVX+diabetic+E(2)+alpha-tocopherol. E(2) (40?μg?kg(-1)/day) and alpha-tocopherol (100?μg?kg(-1)/day) were given. Bilateral ovariectomy was performed in all groups except group I. After 4?weeks, antioxidant and MDA levels in the kidney for all groups were analyzed. GSH-Px, CAT, SOD, GSH levels, vitamin A, and beta carotene levels were decreased in OVX group compared to those in the control group but MDA level was elevated via ovariectomy. However, E(2) and E(2)+alpha-tocopherol supplementations in OVX group was associated with an increase in the GSH-Px, GSH, CAT and Zn-SOD values, vitamin A, and beta carotene levels but a decrease in MDA levels in kidney. The MDA levels in the kidney of diabetic OVX rats were found higher than those in the control and OVX groups. However, GSH, GSH-Px, CAT, SOD, vitamin A, and beta carotene levels in kidney were lower in OVX diabetic rats. On the other hand, E(2) and E(2)+alpha-tocopherol supplementations to OVX diabetic rats have caused an increase in GSH-Px, CAT and SOD, GSH, vitamin A, and beta carotene levels but a decrease in MDA levels. In conclusion, the E(2) and E(2)+alpha-tocopherol supplementations to diabetic OVX and OVX rats may strengthen the antioxidant defense system by reducing lipid peroxidation, and therefore they may play a role in preventing renal disorders.  相似文献   

9.
Oxidative stress is a likely molecular mechanism in lead neurotoxicity. Considering the antioxidant properties of melatonin, this study investigated the neuroprotective potential of melatonin in the hippocampus and corpus striatum of rats treated with lead. Three groups of male rats (control, lead acetate-treated [100 mg/kg], and lead acetate plus melatonin [10 mg/kg] for 21 consecutive days) were used. Levels of products of lipid peroxidation (LPO), glutathione (GSH) and superoxide dismutase (SOD) activity were measured in brain homogenates. Histological changes in the pyramidal cells of the hippocampus and the putamen of the corpus striatum were examined. The results documented increased LPO and decreased GSH and SOD activity in the brain homogenates of lead-treated rats. Histological observations revealed severe damage and a reduction in neuronal density in the hippocampus and corpus striatum. When melatonin was given to lead-treated rats, it almost completely attenuated the increase in LPO products and restored GSH levels and SOD activity. Also, the morphological damage was reduced and neuronal density was restored by melatonin. Considering the ease with which melatonin enters the brain, these results, along with previous observations, suggest that melatonin may be useful in combating free radical-induced neuronal injury that is a result of lead toxicity.  相似文献   

10.
Normal cellular metabolism produces oxidants that are neutralized within cells by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether selenium, an antioxidant, can prevent or slowdown neuronal injury in a 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were pre-treated with sodium selenite (0.1, 0.2 and 0.3 mg/kg body weight) for 7 days. On day 8, 2 micro L 6-OHDA (12.5 micro g in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infusion, rats were tested for neurobehavioral activity, and were killed after 3 weeks of 6-OHDA infusion for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation, and dopamine and its metabolites. Selenium was found to be successful in upregulating the antioxidant status and lowering the dopamine loss, and functional recovery returned close to the baseline dose-dependently. This study revealed that selenium, which is an essential part of our diet, may be helpful in slowing down the progression of neurodegeneration in parkinsonism.  相似文献   

11.
It is well known that antioxidants such as AA (reduced ascorbate), glutathione (GSH) (reduced glutathione) and melatonin can delay seed ageing. Can they recover aged seed? Artificial aged maize seeds were obtained and their reduced germination rate (GR) and high lipid peroxidation were recorded. Exogenous melatonin was applied on these aged seeds and enhanced GR was observed. However, treatment with other antioxidants such as AA, GSH or DMTU (dimethyl thiourea) did not significantly improve or even reduce the GR of aged seeds. In addition, melatonin improved germination ability of theses aged seeds can be significantly impaired by DDC (diethyldithiocarbamic acid, a specific inhibitor of superoxide dismutase or superoxide dismutase (SOD)) and ATZ (aminotriazol, a specific inhibitor of catalase or CAT). In a further study, we found that melatonin but not other antioxidants (AA, GSH and DMTU) significantly induced CAT and SOD activities of aged seeds after imbibition. Accordingly, melatonin significantly reduced lipid peroxidation in aged seeds than that of other antioxidants. Taken together, these data suggest that melatonin induced antioxidant enzyme but not its direct reactive oxygen species (ROS) scavenging capacity contributing to recovery of aged maize seeds.  相似文献   

12.
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.  相似文献   

13.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

14.
Parameters of the antioxidant defense systems of Brycon amazonicus (matrinx?--a neotropical fish) exposed to phenol for 96 h plus the recovery over 1 and 2 weeks were studied in erythrocytes and liver. Hematocrit increase was observed during phenol exposure and recovery for 1 week. Total superoxide dismutases (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) did not change during phenol exposure. Erythrocyte glucose-6-phosphate dehydrogenase (G6PDH) increased during that period while catalase (CAT) activity decreased during phenol exposure and recovery for 2 weeks. In the liver, SOD and CAT did not change, whereas GPx increased in the first week of recovery and decreased after 2 weeks. A late response was observed for G6PDH activity which increased only at the second week. Ascorbate concentration in the brain decreased during phenol exposure and increased over recovery. From our results it appears that the oxidative stress was limited in matrinx? exposed to phenol, but seemed to occur during the recovery period.  相似文献   

15.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

16.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

17.
Rodrigo R  Rivera G  Orellana M  Araya J  Bosco C 《Life sciences》2002,71(24):2881-2895
This study evaluated the antioxidant defense system of the rat kidney following chronic exposure to red wine rich in flavonols. Both ethanol and antioxidant non-alcoholic wine components, mainly polyphenols, could contribute to the antioxidant status of kidney. Adult rats were given separately, water, ethanol (12.5%), red wine or alcohol-free red wine. After ten weeks of treatment, blood samples were obtained to determine plasma antioxidant capacity (FRAP, ferric reducing ability of plasma), uric acid and ethanol levels. Kidney tissues (cortex and papilla) were separated to perform measurements of reduced glutathione (GSH), glutathione disulfide (GSSG), lipid peroxidation (malondialdehyde, MDA) and the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The activity of (Na + K)-ATPase, a membrane-bound enzyme, was also assessed. Red wine in plasma, elevated the FRAP without changing the concentration of uric acid; in kidney, it diminished the MDA production and elevated the GSH/GSSG ratio and the activity of CAT and GSH-Px. The activity of SOD did not change. Despite the finding that renal (Na + K)-ATPase activity was upregulated by ethanol, it was not altered by either red wine or alcohol-free red wine. The effects on the antioxidant enzymes could be attributed to ethanol, but the increase in the FRAP and GSH/GSSG ratio is attributed to the non-alcoholic components of red wine. These data suggest that there is an enhancement of the antioxidant defense potential in kidney and plasma, after chronic red wine consumption. Both ethanol and the non-alcoholic antioxidant constituents of red wine could be responsible for these effects.  相似文献   

18.
The protective effects of glutathione monoester (GME) on buthionine sulfoximine (BSO)-induced glutathione (GSH) depletion and its sequel were evaluated in rat erythrocyte/erythrocyte membrane. Animals were divided into three groups (n=6 in each): control, BSO and BSO+GME group. Administration of BSO, at a concentration of 4 mmol/kg bw, to the albino rats resulted in depletion of blood GSH level to about 59%. GSH was elevated several folds in the GME group as compared to the control (P<0.05) and BSO (P<0.001) groups. Decreased concentration of vitamin E was found in the erythrocyte membrane isolated from BSO-administered animals. Antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were also found to be altered due to BSO-induced GSH depletion in blood erythrocytes. The SOD and CAT activities in BSO group were significantly lower (P<0.001) than the other groups. Lipid peroxidation index and malondialdehyde (MDA) levels in erythrocytes and their membranes were increased to about 45% and 40%, respectively. The activities of Ca2+ ATPase, Mg2+ ATPase and Na+K+ ATPase were lower than those of control group (P<0.05), whereas the activities of these enzymes were found to be restored to normal followed by GME therapy (P<0.05). Cholesterol, phospholipid and C/P ratio and some of the phospholipid classes like phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin were significantly (P<0.05) altered in the erythrocyte membranes of BSO-administered rats compared with those of control group. These parameters were restored to control group levels in GME-treated group. Oxidative stress may play a major role in the BSO-mediated gamma glutamyl cysteine synthetase (gamma-GCS) inhibition and hence the depletion of GSH. In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in BSO-treated rats. GME potentiates the RBC and blood antioxidant defense mechanisms and decreases lipid peroxidation.  相似文献   

19.
To shed light on the association of lipid peroxidation and antioxidant status with the development of aberrant crypt foci (ACF), we studied the modulatory influence of resveratrol, supplemented in three dietary regimens (initiation, post-initiation and entire period) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Rats were administered DMH (20 mg/kg body weight, s.c.) for 15 weeks and were supplemented with resveratrol (8 mg/kg body weight, p.o. everyday) in three dietary regimens. Intestines and colons were analyzed for the levels of diene conjugates (DC), lipid hydroperoxides (LOOHs) and thiobarbituric acid reactive substances (TBARS). Enzymic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione S-transferase, GST; and glutathione reductase, GR) and non-enzymic reserve (reduced glutathione, GSH; ascorbate; and alpha-tocopherol) were also assessed in the intestine and colon. Unsupplemented DMH exposed rats showed significantly decreased levels/activities of tissue DC, LOOHs, TBARS, SOD, CAT, GSH, GR and significantly elevated (P<0.05) GPX, GST, alpha-tocopherol and ascorbate as compared to control rats. Resveratrol supplementation during the entire period of the study resulted in significant (P<0.01) modulation of lipid peroxidation markers and antioxidants status, which were paralleled with ACF suppression, as compared to DMH-alone treated rats. These results indicate that resveratrol effectively inhibits DMH-induced ACF and colonic tumor development.  相似文献   

20.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号