首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

2.
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com. The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1–74 for 5S and 1–54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (>?75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.  相似文献   

3.
Y Sang  G H Liang 《Génome》2000,43(5):918-922
The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.  相似文献   

4.
All Aloe taxa (~400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.  相似文献   

5.
Mapping of rDNA sites on the chromosomes of four diploid and two tetraploid species of Eleusine has provided valuable information on genome relationship between the species. Presence of 18S-5.8S-26S rDNA on the largest pair of the chromosomes, location of 5S rDNA at four sites on two pairs of chromosomes and presence of 18S-5.8S-26S and 5S rDNA at same location on one pair of chromosomes have clearly differentiated E. multiflora from rest of the species of Eleusine. The two tetraploid species, E. coracana and E. africana have the same number of 18S-5.8S-26S and 5S rDNA sites and located at similar position on the chromosomes. Diploid species, E. indica, E. floccifolia and E. tristachya have the same 18S-5.8S-26S sites and location on the chromosomes which also resembled with the two pairs of 18S-5.8S-26S rDNA locations in tetraploid species, E. coracana and E. africana. The 5S rDNA sites on chromosomes of E. indica and E. floccifolia were also comparable to the 5S rDNA sites of E. africana and E. coracana. The similarity of the rDNA sites and their location on chromosomes in the three diploid and two polyploid species also supports the view that genome donors to tetraploid species may be from these diploid species.  相似文献   

6.
Karyotype analysis provides insights into genome organization at the chromosome level and into chromosome evolution. Chromosomes were marked for comparative karyotype analysis using FISH localization of rDNA genes for the first time in Apioideae species including taxa of economic importance and several wild Daucus relatives. Interestingly, Daucus species did not vary in number of rDNA loci despite variation in chromosome number (2n = 18, 20, 22, and 44) and previous publications suggesting multiple loci. All had single loci for both 5S and 18S-25S (nucleolar organizing region) rDNA, located on two different chromosome pairs. The 5S rDNA was on the short arm of a metacentric chromosome pair in D. crinitus (2n = 22) and D. glochidiatus (2n = 44) and on the long arm of a metacentric pair in other Daucus species, suggesting possible rearrangement of this chromosome. For other Apiaceae, from two (Apium graveolens), to three (Orlaya grandiflora), to four (Cuminum cyminum) chromosomes had 18S-25S rDNA sites. Variability for number and position of the 5S rDNA was also observed. FISH signals enabled us to identify 20-40% of the chromosome complement among species examined. Comparative karyotype analysis provides insights into the fundamental aspects of chromosome evolution in Daucus.  相似文献   

7.
The complete 16S-23S rDNA internal transcribed spacer (ITS) was sequenced in 35 reference strains of the Mycobacterium avium complex. Twelve distinct ITS sequences were obtained, each of which defined a "sequevar"; a sequevar consists of the strain or strains which have a particular sequence. ITS sequences were identified which corresponded to M. avium (16 strains, four ITS sequevars) and Mycobacterium intracellulare (12 strains, one ITS sequevars). The other seven M. avium complex strains had ITS sequences which varied greatly from those of M. avium and M. intracellulare and from each other. The 16S-23S rDNA ITS was much more variable than 16S rDNA, which is widely used for genus and species identification. Phylogenetic trees based on the ITS were compatible with those based on 16S rDNA but were more detailed and had longer branches. The results of ITS sequencing were consistent with the results of hybridization with M. avium and M. intracellulare probes (Gen-Probe) for 30 of 31 strains tested. Serologic testing correlated poorly with ITS sequencing. Strains with the same sequence were different serovars, and those of the same serovar had different sequences. Sequencing of the 16S-23S rDNA ITS should be useful for species and strain differentiation for a wide variety of bacteria and should be applicable to studies of epidemiology, diagnosis, virulence, and taxonomy.  相似文献   

8.
The number and distribution of the 18S-28S and 5S rRNA (rDNA) gene sequences were examined on mitotic chromosomes of six sturgeon species by two-colour in situ hybridization. Four of the six species, Huso huso, Acipenser stellatus, Acipenser sturio, and Acipenser ruthenus, with about 120 chromosomes, showed from six to eight 18S-28S rDNA signals, while 5S rDNA signals were on only one chromosome pair. The two species with 250-270 chromosomes, Acipenser baerii and Acipenser transmontanus, showed from 10 to 12 18S-28S sites and two chromosome pairs bearing 5S rDNA signals. In all examined species, the rather intense 5S rDNA signals apparently overlapped those of 18S-28S rDNA. These data support the diploid-tetraploid relationships between the two chromosome groups of sturgeons. The close association between the two rDNA families in species belonging to an ancestral fish order, such as Acipenseriformes, supports the hypothesis that the association represents a primitive condition.  相似文献   

9.
Cospeciation of psyllids and their primary prokaryotic endosymbionts   总被引:3,自引:0,他引:3  
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3' end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

10.
Incoronata Galasso 《Génome》2003,46(6):1118-1124
Multiple-target fluorescence in situ hybridization (FISH) was applied on mitotic chromosomes of seven Lens taxa using two highly repetitive sequences (pLc30 and pLc7) isolated from the cultivated lentil and the multigene families for the 18S-5.8S-25S (pTa71) and 5S rRNA (pTa794) from wheat simultaneously as probes. The number and location of pLc30 and pLc7 sites on chromosomes varied markedly among the species, whereas the hybridization pattern of 5S rDNA and 18S-5.8S-25S rDNA was less variable. In general, each species showed a typical FISH karyotype and few differences were observed among accessions belonging to the same species, except for the accessions of Lens odemensis. The most similar FISH karyotype to the cultivated lentil is that of Lens culinaris subsp. orientalis, whereas Lens nigricans and Lens tomentosus are the two species that showed the most divergent FISH patterns compared with all taxa for number and location of pLc30 and 18S-5.8S-25S rDNA sites.  相似文献   

11.
Wild germplasms are often the only significant sources of useful traits for crops, such as soybean, that have limited genetic variability. Before these germplasms can be effectively manipulated they must be characterized at the cytological and molecular levels. Modern soybean probably arose through an ancient allotetraploid event and subsequent diploidization of the genome. However, wild Glycine species have not been intensively investigated for this ancient polyploidy. In this article we determined the number of both the 5S and 18S-28S rDNA sequences in various members of the genus Glycine using FISH. Our results distinctly establish the loss of a 5S rDNA locus from the "diploid" (2n = 40) species and the loss of two from the (2n = 80) polyploids of GLYCINE: A similar diploidization of the 18S-28S rDNA gene family has occurred in G. canescens, G. clandestina, G. soja, and G. max (L.) Merr. (2n = 40). Although of different genome types, G. tabacina and G. tomentella (2n = 80) both showed two major 18S-28S rDNA loci per haploid genome, in contrast to the four loci that would be expected in chromosomes that have undergone two doubling events in their evolutionary history. It is evident that the evolution of the subgenus Glycine is more complex than that represented in a simple diploid-doubled to tetraploid model.  相似文献   

12.
Mishima M  Ohmido N  Fukui K  Yahara T 《Chromosoma》2002,110(8):550-558
To elucidate the evolutionary dynamics of rDNA site number in polyploid plants, we determined 5S and 18S-5.8S-26S rDNA sites for ten species of Sanguisorba (2n=14, 28, 56) and a single species of each of three outgroup genera, Agrimonia (2n=28), Rosa (2n=14), and Rubus (2n=14) by the fluorescence in situ hybridization (FISH) method. We also estimated phylogenetic relationships among these species using matK chloroplast DNA (cpDNA) sequences, and reconstructed the evolutionary history of rDNA site number based on the maximum parsimony method. The 2n=14 and 2n=28 plants of all genera except Rosa carried two 5S rDNA sites, whereas Rosa and 2n=56 plants carried four sites. The 2n=14 plants had two 18S-5.8S-26S rDNA sites, whereas Sanguisorba annua and 2n=28 plants had four or six sites. Phylogenetic analysis showed that polyploidization from 2n=14 to 2n=28 has occurred once or three times in Sanguisorba and Agrimonia. The 5S rDNA sites duplicated during each ancestral polyploidization were evidently lost after each polyploidization. However, the duplicated 18S-5.8S-26S rDNA sites were all conserved after each polyploidization. Thus, the duplicated 5S rDNA sites tend to have been eliminated, whereas those of 18S-5.8S-26S rDNA tend to have been conserved in Sanguisorba. In the most parsimonious hypothesis, 2n=14 in S. annua is a secondary, putatively dysploid state, reduced from 2n=28.  相似文献   

13.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

14.
* BACKGROUND AND AIMS: The genus Hordeum exists at three ploidy levels (2x, 4x and 6x) and presents excellent material for investigating the patterns of polyploid evolution in plants. Here the aim was to clarify the ancestry of American polyploid species with the I genome. * METHODS: Chromosomal locations of 5S and 18S-25S ribosomal RNA genes were determined by fluorescence in situ hybridization (FISH). In both polyploid and diploid species, variation in 18S-25S rDNA repeated sequences was analysed by the RFLP technique. * KEY RESULTS: Six American tetraploid species were divided into two types that differed in the number of rDNA sites and RFLP profiles. Four hexaploid species were similar in number and location of both types of rDNA sites, but the RFLP profiles of 18S-25S rDNA revealed one species, H. arizonicum, with a different ancestry. * CONCLUSIONS: Five American perennial tetraploid species appear to be alloploids having the genomes of an Asian diploid H. roshevitzii and an American diploid species. The North American annual tetraploid H. depressum is probably a segmental alloploid combining the two closely related genomes of American diploid species. A hexaploid species, H. arizonicum, involves a diploid species, H. pusillum, in its ancestry; both species share the annual growth habit and are distributed in North America. Polymorphisms of rDNA sites detected by FISH and RFLP analyses provide useful information to infer the phylogenetic relationships of I-genome Hordeum species because of their highly conserved nature during polyploid evolution.  相似文献   

15.
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

16.
Cai Q  Zhang D  Liu ZL  Wang XR 《Annals of botany》2006,97(5):715-722
BACKGROUND AND AIMS: Studying the genome structure of pines has been hindered by their large genomes and uniform karyotypes. Consequently our understanding of the genome organization and evolutionary changes in different groups of pines is extremely limited. However, techniques are now available that can surmount these difficulties. The purpose of this study was to exploit some of these techniques to characterize the genome differentiation between the two subgenera of Pinus: Pinus and Strobus. METHODS: Double-probe fluorescence in-situ hybridization (FISH) was used to localize the 5S and 18S rDNA loci on chromosomes of five species from the subgenus Strobus: P. bungeana, P. koraiensis, P. armandii, P. wallichiana and P. strobus. * KEY RESULTS: The rDNA FISH pattern varied considerably among the five species, with P. bungeana being the most distinct. By comparing the results obtained with those of previous rDNA FISH studies of members of the subgenus Pinus, several general features of rDNA loci distribution in the genus Pinus can be discerned: (a) species of subgenus Strobus generally have more rDNA loci than species of subgenus Pinus, correlating with their larger genomes in the subgenus Strobus; (b) there is a clear differentiation in 5S and 18S rDNA loci linkage patterns between the two subgenera; (c) variations in the rDNA FISH pattern correlate with phylogenetic relationships among species within the subgenus; (d) P. bungeana has fewer 18S rDNA sites than other pines investigated to date, but they give intense signals, and may reflect the primary distribution of the 18S-25S rDNA loci in the genus. CONCLUSIONS: The stable differentiation in rDNA FISH pattern between the subgenera suggests that chromosomal rearrangements played a role in the splitting of the two subgenera, and transpositional events rather than major structural changes are likely responsible for the variable rDNA distribution patterns among species of the same subgenus with conserved karyotypes.  相似文献   

17.
Baum BR  Johnson DA  Bailey LG 《Hereditas》2001,135(2-3):123-138
Sequence information from multicopy genes has been widely used for phylogenetic inference. Among those sequences analyzed, nuclear 5S rRNA genes, the two internal transcribed spacer regions (ITS1 and ITS2) of the 18S-26S rDNA genes, and the intergenic spacer (IGS) regions of the same 18S-26S rDNA genes have all been used at the specific, generic, familial and tribal levels. Many investigations have used direct sequencing of PCR products to generate sequence data. The merits of an alternate approach, namely, cloning prior to sequencing followed by careful alignment of numerous cloned sequences to discern groups of putative orthologous sequences that may then be useful for the inference of relationships among species and genera, are examined and discussed. This process discerns patterns resulting from several cycles of careful alignment followed by manual editing conducted by eye--an exacting operation especially when sequences are unequal in length due to the presence of additions/deletions. Based upon examples taken from our work on the sequencing of individual 5S rDNA clones from several wheat and barley species (Triticum and Hordeum respectively), and the re-analysis of data of others taken from several studies using the nuclear genes mentioned above, we are able to identify groups of putative orthologous sequences that we have named "unit classes". Furthermore, comparisons between provisional orthologous sequences isolated from different species are required for the inference of phylogenetic relationships between them. Paralogous sequences from different unit classes can be compared to infer evolutionary relationships among repeat types only, i.e. among unit classes. In several cases, the analysis of the sequence diversity obtained from different clones permitted the assignment of unit classes to specific haplomes.  相似文献   

18.
AIMS: Fourier transform infrared (FT-IR) was used to analyse a selection of Acinetobacter isolates in order to determine if this approach could discriminate readily between the known genomic species of this genus and environmental isolates from activated sludge. METHODS AND RESULTS: FT-IR spectroscopy is a rapid whole-organism fingerprinting method, typically taking only 10 s per sample, and generates 'holistic' biochemical profiles (or 'fingerprints') from biological materials. The cluster analysis produced by FT-IR was compared with previous polyphasic taxonomic studies on these isolates and with 16S-23S rDNA intergenic spacer region (ISR) fingerprinting presented in this paper. FT-IR and 16S-23S rDNA ISR analyses together indicate that some of the Acinetobacter genomic species are particularly heterogeneous and poorly defined, making characterization of the unknown environmental isolates with the genomic species difficult. CONCLUSIONS: Whilst the characterization of the isolates from activated sludge revealed by FT-IR and 16S-23S rDNA ISR were not directly comparable, the dendrogram produced from FT-IR data did correlate well with the outcomes of the other polyphasic taxonomic work. SIGNIFICANCE AND IMPACT OF THE STUDY: We believe it would be advantageous to pursue this approach further and establish a comprehensive database of taxonomically well-defined Acinetobacter species to aid the identification of unknown strains. In this instance, FT-IR may provide the rapid identification method eagerly sought for the routine identification of Acinetobacter isolates from a wide range of environmental sources.  相似文献   

19.
Fluorescent in situ hybridization (FISH) was applied to diploid and tetraploid subspecies of alfalfa (Medicago sativa L.) to investigate the distribution of rRNA genes and to utilize the sites of 18S-5.8S-25S rDNA and 5S rDNA sequences as markers for studying the genome evolution within the species. Medicago glomerata Balb., the species considered to be the ancestor of alfalfa, was included in this study in order to obtain more information on the phylogenetics of alfalfa. Simultaneous in situ hybridization was performed with the probes pTa71 and pXVI labeled with digoxigenin and biotin, respectively. In the diploid taxa, M. glomerata, M. sativa ssp. coerulea Schmalh and ssp. falcata Arcangeli, the 18S-5.8S-25S rDNA sequences were mapped to two sites corresponding to the secondary constrictions of the nucleolar chromosome pair, while 5S rDNA appeared to be distributed in two pairs of sites. Chromosomes carrying 5S loci could be distinguished on the basis of their morphological characteristics. The number of rDNA sites detected in the tetraploid M. sativa ssp. falcata and ssp. sativa (L.) L. & L. were twice the number found in the respective diploid ssp. falcata and ssp. coerulea. The results of this study show that the distribution of ribosomal genes was maintained during the evolutionary steps from the primitive diploid to the cultivated alfalfa. Modifications of the number of rRNA loci were not observed. The importance of in situ hybridization for improving karyotype analysis in M. sativa L. is discussed.  相似文献   

20.
Li D  Zhang X 《Annals of botany》2002,90(4):445-452
Fluorescence in situ hybridization was used in Thinopyrum ponticum, a decaploid species, and its related diploid species, to investigate the distribution of the 18S-5.8S-26S rDNA. The distribution of rDNA was similar in all three diploid species (Th. bessarabicum, Th. elongatum and Pseudoroegneria stipifolia). Two pairs of loci were observed in each somatic cell at metaphase and interphase. One pair was located near the terminal end and the other in the interstitial regions of the short arms of one pair of chromosomes. However, all of the major loci in Th. ponticum were located on the terminal end of the short arms of chromosomes, and one chromosome had only one major locus. The maximum number of major loci detected on metaphase spreads was 20, which was the sum of that of its progenitors. The interstitial loci that exist in the possible diploid genome donor species were probably 'lost' during the evolutionary process of the decaploid species. A number of minor loci were also detected on whole regions of two pairs of homologous chromosomes. These results suggested that the position of rDNA loci in the Triticeae might be changeable rather than fixed. Positional changes of 18S-5.8S-26S rDNA loci between Th. ponticum and its candidate genome donors indicate that it is almost impossible to find a genome in the polyploid species that is completely identical to that of its diploid donors. The possible evolutionary significance of the distribution of the rDNA is also discussed. Internal transcribed spacer (ITS) regions of nuclear DNA in Th. ponticum were investigated by PCR amplification and sequencing. The sequence data from five positive clones selected at random, together with restriction site analysis, indicated that the ITS repeated units are nearly homogeneous in this autoallodecapolypoid species. Combined with in situ hybridization results, the data led to the conclusion that the ITS region has experienced interlocus as well as intralocus concerted evolution. Phylogenetic analyses showed that the sequences from Th. ponticum have concerted to the E genome repeat type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号