首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder, the primary features of which include obesity, retinal dystrophy, polydactyly, hypogenitalism, learning difficulties, and renal malformations. Conventional linkage and positional cloning have led to the mapping of six BBS loci in the human genome, four of which (BBS1, BBS2, BBS4, and BBS6) have been cloned. Despite these advances, the protein sequences of the known BBS genes have provided little or no insight into their function. To delineate functionally important regions in BBS2, we performed phylogenetic and genomic studies in which we used the human and zebrafish BBS2 peptide sequences to search dbEST and the translation of the draft human genome. We identified two novel genes that we initially named "BBS2L1" and "BBS2L2" and that exhibit modest similarity with two discrete, overlapping regions of BBS2. In the present study, we demonstrate that BBS2L1 mutations cause BBS, thereby defining a novel locus for this syndrome, BBS7, whereas BBS2L2 has been shown independently to be BBS1. The motif-based identification of a novel BBS locus has enabled us to define a potential functional domain that is present in three of the five known BBS proteins and, therefore, is likely to be important in the pathogenesis of this complex syndrome.  相似文献   

2.
3.
4.
Human Brox is a newly identified 46 kDa protein that has a Bro1 domain-like sequence and a C-terminal thioester-linkage site of isoprenoid lipid (CAAX motif) (C standing for cysteine, A for generally aliphatic amino acid, and X for any amino acid). Mammalian Alix and its yeast ortholog, Bro1, are known to associate with charged multivesicular body protein 4 (CHMP4), a component of endosomal sorting complex required for transport III, via their Bro1 domains and to play roles in sorting of ubiquitinated cargoes. We investigated whether Brox has an authentic Bro1 domain on the basis of its capacity for interacting with CHMP4s. Both Strep Tactin binding sequence (Strep)-tagged wild-type Brox (Strep-Brox(WT)) and Strep-tagged farnesylation-defective mutant (Cys-->Ser mutation; Strep-Brox(C408S)) pulled down FLAG-tagged CHMP4b that was coexpressed in HEK293 cells. Treatment of cells with a farnesyltransferase inhibitor, FTI-277, caused an electrophoretic mobility shift of Strep-Brox(WT), and the mobility coincided with that of Strep-Brox(C408S). The inhibitor also caused a mobility shift of endogenous Brox detected by western blotting using polyclonal antibodies to Brox, suggesting farnesylation of Brox in vivo. Fluorescence microscopic analyses revealed that Strep-Brox(WT) exhibited accumulation in the perinuclear area and caused a punctate pattern of FLAG-CHMP4b that was constitutively expressed in HEK293 cells. On the other hand, Strep-Brox(C408S) showed a diffuse pattern throughout the cell, including the nucleus, and did not cause accumulation of FLAG-CHMP4b. Fluorescent signals of monomeric green fluorescent protein (mGFP)-fused Brox(WT) merged partly with those of Golgi markers and with those of abnormal endosomes induced by overexpression of a dominant negative mutant of AAA type ATPase SKD1/Vps4B in HeLa cells, but such colocalization was less efficient for mGFP-Brox(C408S). These results suggest a physiological significance of farnesylation of Brox in its subcellular distribution and efficient interaction with CHMP4s in vivo.  相似文献   

5.
Cyclins play a key role in controlling progression through the cell cycle. They act as regulatory subunits of p34cdc2/CDC28 and related cyclin-dependent protein kinases (cdks). In vertebrates, cyclins B1 and B2 function during M phase, whereas cyclin A is required for S phase as well as the G2 to M phase transition. Here, we describe the identification and characterization of a novel vertebrate cyclin, termed cyclin B3. The assignment of this cyclin to the B-type subfamily is based on its cDNA-derived sequence and its pattern of expression in synchronized cells, both suggesting a distant relationship to other B-type cyclins. Interestingly, however, cyclin B3 also displays properties that resemble those of A- rather than B-type cyclins. Specifically, cyclin B3 localizes to the cell nucleus throughout the cell cycle, and is able to associate in vivo with at least two kinase subunits, p34cdc2 and p33cdk2. Furthermore, deletion of 26 amino acids from the C-terminus of cyclin B3 impairs both its interaction with kinase catalytic subunits and its nuclear localization, reminiscent of recent results obtained with cyclin A. Based on these observations, we conclude that cyclin B3 may share functional properties with both A- and B-type cyclins.  相似文献   

6.
7.
8.
Release factors (RF) 1 and 2 trigger the hydrolysis of the peptide from the peptidyl-tRNA during translation termination. RF1 binds to the ribosome in response to the stop codons UAG and UAA, whereas RF2 recognizes UAA and UGA. RF1 and RF2 have been shown to bind to several ribosomal proteins. To study this interaction in vivo, prfA1, a mutant form of RF1 has been used. A strain with the prfA1 mutation is temperature sensitive (Ts) for growth at 42 degrees C and shows an increased misreading of UAG and UAA. In this work we show that a point mutation in ribosomal protein S4 can, on the one hand, make the RF1 mutant strain Ts(+); on the other hand, this mutation increases the misreading of UAG, but not UAA, caused by prfA1. The S4 mutant allele, rpsD101, is a missense mutation (Tyr51 to Asp), which makes the cell cold sensitive. The behaviour of rpsD101 was compared to the well-studied S4 alleles rpsD12, rpsD14, and rpsD16. These three mutations all confer both a Ts (44 degrees C) phenotype and show a ribosomal ambiguity phenotype, which rpsD101 does not. The three alleles were sequenced and shown to be truncations of the S4 protein. None of the three mutations could compensate for the Ts phenotype caused by the prfA1 mutation. Hence, rpsD101 differs in all studied characteristics from the three above mentioned S4 mutants. Because rpsD101 can compensate for the Ts phenotype caused by prfA1 but enhances the misreading of UAG and not UAA, we suggest that S4 influences the interaction of RF1 with the decoding center of the ribosome and that the Ts phenotype is not a consequence of increased readthrough.  相似文献   

9.
The nematode CED-4 protein and its human homolog Apaf-1 play a central role in apoptosis by functioning as direct activators of death-inducing caspases. A novel human CED-4/Apaf-1 family member called CARD4 was identified that has a domain structure strikingly similar to the cytoplasmic, receptor-like proteins that mediate disease resistance in plants. CARD4 interacted with the serine-threonine kinase RICK and potently induced NF-kappaB activity through TRAF-6 and NIK signaling molecules. In addition, coexpression of CARD4 augmented caspase-9-induced apoptosis. Thus, CARD4 coordinates downstream NF-kappaB and apoptotic signaling pathways and may be a component of the host innate immune response.  相似文献   

10.
Many receptors involved in clathrin-mediated protein transport through the endocytic and secretory pathways of yeast and animal cells share common features. They are all type I integral membrane proteins containing cysteine-rich lumenal domains and cytoplasmic tails with tyrosine-containing sorting signals. The cysteine-rich domains are thought to be involved in ligand binding, whereas the cytoplasmic tyrosine motifs interact with clathrin-associated adaptor proteins during protein sorting along these pathways. In addition, tyrosine-containing signals are required for the retention and recycling of some of these membrane proteins to the trans-Golgi network. Here we report the characterization of an approximately 80-kD epidermal growth factor receptor-like type I integral membrane protein containing all of these functional motifs from Arabidopsis thaliana (called AtELP for A. thaliana Epidermal growth factor receptor-Like Protein). Biochemical analysis indicates that AtELP is a membrane protein found at high levels in the roots of both monocots and dicots. Subcellular fractionation studies indicate that the AtELP protein is present in two membrane fractions corresponding to a novel, undefined compartment and a fraction enriched in vesicles containing clathrin and its associated adaptor proteins. AtELP may therefore serve as a marker for compartments involved in intracellular protein trafficking in the plant cell.  相似文献   

11.
This is the first report on the existence in Drosophila of a protein with properties similar to those of vertebrate fibronectin that we shall refer to as Drosophila fibronectin. Rabbit antibodies against human plasma fibronectin have allowed the detection of this molecule in Drosophila haemolymph; common epitopes are shared by the two proteins. Drosophila fibronectin with a subunit mol. wt of approximately 230 kd is a glycoprotein which binds to denatured mammalian collagen. It is present throughout development and is as abundant in embryos as in larvae and adult flies. Drosophila fibronectin is differentially expressed during embryogenesis, a small amount being present before the blastoderm stage. Its concentration increases at gastrulation and reaches a steady-state value at the end of organogenesis. Drosophila fibronectin is predominantly detected by immunofluorescence on frozen sections of 16 h embryos in the extracellular spaces lying between the different tissues and organs. In mature third instar larvae, most of the staining is concentrated in fat body and imaginal discs, and the pattern strongly supports an extracellular localization of the protein. In addition, it is shown that Drosophila embryonic cells can functionally utilize vertebrate fibronectin for their spreading and differentiation. Finally, injection of antihuman plasma fibronectin antibodies in early embryos leads to the same phenotype as injection of Arg-Gly-Asp-containing peptides. This result suggests that one of the Arg-Gly-Asp-bearing protein(s) involved in gastrulation might be fibronectin.  相似文献   

12.
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.  相似文献   

13.
Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation. CIIA also associates with CAD and inhibits the nuclease activity of CAD without affecting caspase-3-mediated ICAD cleavage. Overexpressed CIIA reduces H2O2- and tumor necrosis factor-alpha-induced apoptosis. CIIA antisense oligonucleotides, which abolish expression of endogenous CIIA in murine L929 cells, block the inhibitory effect of CIIA on ASK1 activation, deoxyribonucleic acid fragmentation, and apoptosis. These findings suggest that CIIA is an endogenous antagonist of both ASK1- and CAD-mediated signaling.  相似文献   

14.
The centrosome in animal cells provides a major microtubule-nucleating site that regulates the microtubule cytoskeleton temporally and spatially throughout the cell cycle. We report the identification in Drosophila melanogaster of a large coiled-coil centrosome protein that can bind to calmodulin. Biochemical studies reveal that this novel Drosophila centrosome protein, centrosome protein of 309 kDa (CP309), cofractionates with the gamma-tubulin ring complex and the centrosome-complementing activity. We show that CP309 is required for microtubule nucleation mediated by centrosomes and that it interacts with the gamma-tubulin small complex. These findings suggest that the microtubule-nucleating activity of the centrosome requires the function of CP309.  相似文献   

15.
16.
17.
Kim HS  Delaney TP 《The Plant cell》2002,14(7):1469-1482
One of several induced defense responses in plants is systemic acquired resistance (SAR), which is regulated by salicylic acid and in Arabidopsis by the NIM1/NPR1 protein. To identify additional components of the SAR pathway or other genes that regulate SAR-independent resistance, we performed genetic suppressor screens of mutagenized nim1-1 seedlings, which are highly susceptible to infection by Peronospora parasitica. We isolated the son1 (suppressor of nim1-1) mutant, which shows full restoration of pathogen resistance without the induction of SAR-associated genes and expresses resistance when combined with a salicylate hydroxylase (nahG) transgene. These features indicate that son1-mediated resistance is distinct from SAR. Resistance is effective against both the virulent oomycete Peronospora and the bacterial pathogen Pseudomonas syringae pv tomato strain DC3000. We cloned SON1 and found it to encode a novel protein containing an F-box motif, an element found within the specificity determinant in the E3 ubiquitin-ligase complex. We propose the existence of a novel defense response that is independent of SAR and negatively regulated in Arabidopsis by SON1 through the ubiquitin-proteosome pathway.  相似文献   

18.
We have previously reported that KML1-7 cells cloned from a lupus-prone MRL/l mouse produced a soluble factor that preferentially expanded anti-DNA antibody production across the H-2 barrier. We purified this factor, a 55 kD protein that we termed nucleobindin (Nuc), and obtained its cDNA clone. Although the gene for Nuc encodes a signal peptide and, in fact, Nuc was identified as a secreted protein, Nuc had a DNA-binding property. The putative polypeptide predicted from the cDNA sequence featured a signal peptide, a leucine zipper structure and a basic amino acid-rich region. The DNA-binding property of Nuc was destroyed by deletion of either the leucine zipper structure or the basic amino acid-rich region. The amino acid sequences of Nuc are highly conserved between mouse and human. We discuss the possible role of Nuc in autoimmunity.  相似文献   

19.
We report the cloning of the NKIAMRE gene located on human chromosome 5q31.1. It encodes a novel 52kDa Cdc2-related kinase with a 1.5kb open reading frame. Like MAP kinases, NKIAMRE contains a Thr-X-Tyr (TXY) motif in the activation loop domain. Similar to cdks, NKIAMRE contains the putative negative regulatory Ser14 and Tyr15 residues and the cyclin-binding motif, NKIAMRE, from which it derives its name. Human NKIAMRE has significant amino acid identity to related kinases in rat, mouse, Caenorhabditis elegans, and Drosophila, and is widely expressed in human tissues and cell lines. Confocal microscopy demonstrates that NKIAMRE localizes to the cytoplasm. NKIAMRE is activated by treatment of cells with phorbol 12-myristate 13-acetate. Mutation of the ATP-binding Lys-33 to arginine and the Thr-Glu-Tyr motif to Ala-Glu-Phe abolished its ability to phosphorylate myelin basic protein. NKIAMRE is a member of a conserved family of kinases with homology to both MAP kinases and cyclin-dependent kinases.  相似文献   

20.
The cyclic heptapeptide, microcystin-LR, inhibits protein phosphatases 1 (PP1) and 2A (PP2A) with Ki values below 0.1 nM. Protein phosphatase 2B is inhibited 1000-fold less potently, while six other phosphatases and eight protein kinases tested are unaffected. These results are strikingly similar to those obtained with the tumour promoter okadaic acid. We establish that okadaic acid prevents the binding of microcystin-LR to PP2A, and that protein inhibitors 1 and 2 prevent the binding of microcystin-LR to PP1. We discuss the possibility that inhibition of PP1 and PP2A accounts for the extreme toxicity of microcystin-LR, and indicate its potential value in the detection and analysis of protein kinases and phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号