首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to examine if differences in activity and inducibility of antioxidative enzymes in rat cerebral cortex and hippocampus are underlying their different sensitivity to radiation, we exposed four-day-old female Wistar rats to cranial radiation of 3 Gy of gamma-rays. After isolation of hippocampus and cortex 1 h or 24 h following exposure, activities of copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured and compared to unirradiated controls. MnSOD protein levels were determined by SDS-PAGE electrophoresis and Western blot analysis. Our results showed that CuZnSOD activity in hippocampus and cortex was significantly decreased 1 h and 24 h after irradiation with 3 Gy of gamma-rays. MnSOD activity in both brain regions was also decreased 1 h after irradiation. 24 h following exposure, manganese SOD activity in hippocampus almost achieved control values, while in cortex it significantly exceeded the activity of the relevant controls. CAT activity in hippocampus and cortex remained stable 1 h, as well as 24 h after irradiation with 3 Gy of gamma-rays. MnSOD protein level in hippocampus and cortex decreased 1 h after irradiation with 3 Gy of gamma-rays. 24 h after exposure, MnSOD protein level in cortex was similar to control values, while in hippocampus it was still significantly decreased. We have concluded that regional differences in MnSOD radioinducibility are regulated at the level of protein synthesis, and that they represent one of the main reasons for region-specific radiosensitivity of the brain.  相似文献   

2.
The effects of prenatal stress on the hypothalamic-pituitary-adrenal (HPA) axis activity and brain glycocorticoid receptors were studied in neonatal male and female offspring, as well as the influence of neonatal glycocorticoid receptors blockade on hormonal stress reactivity of adult rats. The results showed that there were sexual differences in plasma corticosterone level and corticosteroid binding in the cortex and hypothalamus of 5-day old control rats. Prenatal stress increased basal level of corticosterone in female rats, decreased corticosterone binding in hypothalamus and hippocampus of male and female rats, and increased corticosteroid receptor level in the male cortex. Neonatal administration of glycocorticoid receptor antagonist did not change plasma corticosterone level in 5-day old rats, but prolonged hormonal stress response of the HPA axis in adult male rats and increased hormonal stress response in female ones. The character of the IIPA axis activity of male and female rats with neonatal blockade of glycocorticoid receptors correspond to hormonal stress response of prenatal stressed rats. These data suggest that change of brain glycocorticoid receptors function in neonatal period of development might be one of the mechanisms of prenatal stress influence on the HPA axis activity in the adulthood.  相似文献   

3.
Individuals born with a low birth weight (LBW) have an increased prevalence of type 2 diabetes, but the mechanisms responsible for this association are unknown. Given the important role of insulin resistance in the pathogenesis of type 2 diabetes, we examined insulin sensitivity in a rat model of LBW due to intrauterine fetal stress. During the last 7 days of gestation, rat dams were treated with dexamethasone and insulin sensitivity was assessed in the LBW offspring by a hyperinsulinemic euglycemic clamp. The LBW group had liver-specific insulin resistance associated with increased levels of PEPCK expression. These changes were associated with pituitary hyperplasia of the ACTH-secreting cells, increased morning plasma ACTH concentrations, elevated corticosterone secretion during restraint stress, and an approximately 70% increase in 24-h urine corticosterone excretion. These data support the hypothesis that prenatal stress can result in chronic hyperactivity of the hypothalamic-pituitary-adrenal axis, resulting in increased plasma corticosterone concentrations, upregulation of hepatic gluconeogenesis, and hepatic insulin resistance.  相似文献   

4.
In the present study, we examined whether the vagus nerve is involved in mediating the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic and nicotinic agonists, carbachol and nicotine. The site of HPA axis muscarinic stimulation was determined using peripheral (i.p.) and intracerebroventricular (i.c.v.) administration of carbachol, atropine sulphate (AtrS) and atropine hydrobromide (AtrBr). The i.p. carbachol-(0.5 mg/kg)-induced corticosterone response was significantly reduced by i.p. pretreatment with AtrBr (0.1 mg/kg), but was not diminished by i.c.v. AtrS (0.1 mug). The increase in corticosterone secretion induced by i.c.v. carbachol (2 microg) was totally abolished by i.c.v. pretreatment with AtrS (0.1 microg) but was not altered by i.p. AtrBr. Subdiaphragmatic vagotomy performed 2 weeks earlier substantially decreased the i.p. carbachol (0.2 mg/kg)-induced ACTH response and markedly augmented ACTH and corticosterone response to a higher dose of carbachol (0.5 mg/kg) in comparison with the responses in sham operated rats. Vagotomy abolished the stimulatory effect of i.p. nicotine in a low dose (1 mg/kg) on ACTH and corticosterone secretion; the ACTH response to higher dose (2.5 mg/kg) was considerably reduced, while corticosterone response remained unaffected. These results suggest that carbachol given i.c.v. evokes considerable corticosterone response by stimulation of central cholinergic muscarinic receptors. A major part of the i.p. carbachol-induced corticosterone secretion results from peripheral cholinergic muscarinic receptor stimulation. Subdiaphragmatic vagotomy moderately intensified the carbachol-induced ACTH and corticosterone secretion. Vagotomy significantly reduced the nicotine-induced ACTH secretion, possibly by the involvement of vagal afferents. The nicotine-induced corticosterone secretion is not exclusively regulated by circulating ACTH but by various intra-adrenal regulatory components.  相似文献   

5.
Rapid inactivation of enzymes prior to the assay of rat brain catecholamines was evaluated. Regional levels of norepinephrine and dopamine were measured by high performance liquid chromatography with electrochemical detection after enzyme inactivation by microwave irradiation at levels of 1.3 kw and 5 kw, and compared with decapitation. The differences found in regional levels of catecholamines between the two methods of euthanasia indicate that rapid inactivation of brain enzymes is necessary for accurate analysis of catecholamines in rat brain.  相似文献   

6.
Growth hormone release in children after cranial irradiation   总被引:2,自引:0,他引:2  
Growth retardation due to growth hormone (GH) deficiency is common in children after radiotherapy to the brain. Different methods for assessment of GH secretion were compared in 19 children who had received radiotherapy to the brain as part of treatment for a tumor of the brain, eye or epipharynx. GH was measured over a 24-hour period (72 sampling periods of 20 min each), as well as after administration of growth hormone-releasing hormone (GHRH) and arginine-insulin (AITT) tests. We found the 24-hour GH profile to be disturbed in all children; there was a low overall secretion with few peaks of low amplitude but a diurnal rhythm still discernable. In 16 children a prompt rise in GHRH after GHRH1-40 was seen indicating hypothalamic damage. The GH response after GHRH was not found to be correlated to the spontaneous secretion over 24 h. The results of the AITT showed discrepancies to the 24-hour GH profile in individual cases making this test unreliable in spite of a good overall correlation between the tests. Therefore, we suggest measurement of spontaneous secretion when GH-secretory capability is to be evaluated after cranial irradiation for a brain tumor.  相似文献   

7.
Regulation of the hypothalamic-pituitary-adrenal axis in birth   总被引:1,自引:0,他引:1  
In sheep an increase in fetal pituitary-adrenal function, reflected in rising concentrations of plasma ACTH and cortisol, is important in relation to fetal organ maturation and the onset of parturition. This review presents evidence that implicates the hypothalamic-pituitary-adrenal axis in the control of parturition and describes recent experiments that explore in detail the maturation of the fetal hypothalamus and pituitary in relation to fetal adrenal function. Recent improvements for the measurement of ACTH in unextracted plasma and the ability to maintain vascular catheters in chronically catheterized fetal sheep have enabled subtle changes in fetal ACTH concentrations to be detected. As a result of these advances it has now been established that the terminal rise in cortisol, which is responsible for the onset of parturition in sheep, is preceded by an increase in fetal plasma ACTH concentrations. This has led to the hypothesis that birth results from the sequential development of the fetal hypothalamic-pituitary-adrenal axis with the signal originating from the fetal brain. This increase in trophic drive to the fetal adrenal may result from changes in the responsiveness of the fetal pituitary gland to factors that stimulate the release of ACTH. Corticotropin releasing factor (CRF) and arginine vasopressin are two such factors that stimulate the secretion of ACTH and cortisol secretion in the chronically catheterized fetal sheep. The response to these factors increases with gestational age and is sensitive to glucocorticoid feedback. Furthermore, repeated administration of CRF to immature fetal sheep results in pituitary and adrenal activation and in some cases may lead to premature parturition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A study was made of the effect of different radiation doses on the brain enzymes degrading enkephalins. Enkephalin aminopeptidase activity decreased during the first 60 min following irradiation with a dose of 774 X 10(-4) C/kg and increased after a dose of 3096 X X 10(-4) C/kg; enkephalinase A exhibited opposite changes. 48 hr after irradiation, enkephalin aminopeptidase activity exceeded the normal level, and no significant changes occurred in encephaliase A activity irrespective of the radiation dose.  相似文献   

9.
The effects of a lethal gamma irradiation were investigated on cerebral NO-ergic system by using a voltammetric method in freely moving rats. It is reported that the cortical NO concentration increases right from the end of the radiation exposure (15 Gy) and reaches a maximal magnitude (+120%) 24 h later. A dose-effect relationship from 2 to 15 Gy for gamma-ray exposure has also been observed. The effects, obtained with either an NO synthase inhibitor nonselective for the different NO synthase isoforms or an NO synthase inhibitor selective for the constitutive isoform, suggest that the radiation-induced increase in NO is likely to be dependent on the inducible NO synthase isoform. Moreover, experiments performed under ex vivo conditions showed that the cortical mRNA level for Ca(++)-independent NO synthase, the brain NOS activity, and urinary nitrites/nitrates increased significantly 24 h after gamma-ray exposure. These results demonstrate that a supralethal whole-body irradiation alters the NO-ergic pathways. The increase in NO obtained under such conditions might constitute a good index of central nervous system radiosensitivity during the acute phase of the radiation syndrome.  相似文献   

10.
Skin exposure to high doses of ultraviolet B (UVB) radiation generates a severe inflammatory skin response. In the present study we aim to investigate, using in vitro and in vivo models, the time-course of the inflammatory skin immune response after an acute exposure to UVB irradiation, as well as its modulation by a topical non-steroidal anti-inflammatory drug (NSAID) treatment, naproxen. PGE2 production and TNF-alpha levels increase in a post-irradiation time-dependent manner both in vivo and in vitro. This production pattern is also reflected in the iNOS expression levels in vivo and in the IL-6 levels in vitro. Changes observed in these mediators are correlated with histological alterations and dermal infiltration after the acute UVB irradiation. Naproxen treatment notably reduces PGE2 production and iNOS expression, reflecting the COX-NOS crosstalk already reported, although it causes an important increment in TNF-alpha synthesis in the epidermis of irradiated mice. Taken together, our data indicates that the epidermis is severely damaged by UVB radiation but then it is able to fully recover, and that the immune response is modulated by the NSAID treatment, since it is able to reduce the levels of some mediators as well as it can increase others.  相似文献   

11.
12.
Burrell K  Hill RP  Zadeh G 《PloS one》2012,7(6):e38366
Radiation therapy (RT) is a widely accepted treatment strategy for many central nervous system (CNS) pathologies. However, despite recognized therapeutic success, significant negative consequences are associated with cranial irradiation (CR), which manifests months to years post-RT. The pathophysiology and molecular alterations that culminate in the long-term detrimental effects of CR are poorly understood, though it is thought that endothelial injury plays a pivotal role in triggering cranial injury. We therefore explored the contribution of bone marrow derived cells (BMDCs) in their capacity to repair and contribute to neo-vascularization following CR. Using high-resolution in vivo optical imaging we have studied, at single-cell resolution, the spatio-temporal response of BMDCs in normal brain following CR. We demonstrate that BMDCs are recruited specifically to the site of CR, in a radiation dose and temporal-spatial manner. We establish that BMDCs do not form endothelial cells but rather they differentiate predominantly into inflammatory cells and microglia. Most notably we provide evidence that more than 50% of the microglia in the irradiated region of the brain are not resident microglia but recruited from the bone marrow following CR. These results have invaluable therapeutic implications as BMDCs may be a primary therapeutic target to block acute and long-term inflammatory response following CR. Identifying the critical steps involved in the sustained recruitment and differentiation of BMDCs into microglia at the site of CR can provide new insights into the mechanisms of injury following CR offering potential therapeutic strategies to counteract the long-term adverse effects of CR.  相似文献   

13.
The effect of the total single and chronic roentgen irradiation in the dose of 0.25 Gy on the rats to alteration dynamics in lysosomal cysteine cathepsin L [CE 3.4.22.15] level in different brain regions (cortex, cerebellum, middle brain, varolian, hippocampus, striatum) was studied as a result of 1, 12, 24, 120 and 168 hours of exposure. The data obtained displayed the opposite consequences of chronic effect of 0.01 Gy during 25 days if compare with the single irradiation by 0.25 Gy that led to the cathepsin L changes different in directivity and activity level in dependence on brain region and post-irradiation period.  相似文献   

14.
The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. This resulted in a significant reduction in plasma corticosterone concentrations within 23 min of the aldosterone bolus and 28 min of methylprednisolone. Evaluation of the pulsatile secretion of corticosterone revealed that the secretory event in progress at the time of administration of exogenous steroid was unaffected, whereas the next secretory event was inhibited by both aldosterone and methylprednisolone. The inhibitory effect of aldosterone was limited in duration (1 secretory event only), whereas that of methylprednisolone persisted for 4-5 h. Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.  相似文献   

15.
We studied feral free-living pigeons (Columba livia) to determine whether either unstressed or stress-induced corticosterone release was altered during a prebasic molt. The pigeons were at various stages of molt throughout the study, but corticosterone responses in molting and nonmolting birds did not differ. This was further reflected in equivalent adrenal responses to exogenous adrenocorticotropic hormone (ACTH), suggesting equivalent steroidogenic capacity of adrenal tissues during both physiological states. There was a slight change, however, in pituitary regulation during molt. Whereas exogenous arginine vasotocin (AVT) elevated corticosterone levels in nonmolting birds, during molt an equivalent dose of AVT was ineffective, suggesting that the pituitary is less sensitive to an AVT signal during molt. AVT also appears to be more effective than corticotropin-releasing factor at eliciting ACTH release in pigeons. Overall, these data indicate that pigeons regulate their corticosterone release differently during molt than other avian species studied to date.  相似文献   

16.
《Life sciences》1994,54(10):PL165-PL171
The possible involvement of lipopolysaccharide (LPS) and interleukin-1β (IL-1β) and their eventual interplay in CRH and ACTH release from cultured hypothalamic and pituitary cells respectively, have been studied. IL-1β was able to activate the hypothalamo-pituitary-adrenal axis at both hypothalamic and pituitary sites; LPS showed no direct action at hypothalamic level but it was able to inhibit basal and IL-1β-induced ACTH release: this could be responsible for a blunting of the adrenal cortex response that normally occurs in septic shock syndrome.  相似文献   

17.
18.
Pneumococcal meningitis is a life-threatening disease characterized by acute purulent infection of the meninges causing neuronal injury, cortical necrosis and hippocampal apoptosis. Cholinergic neurons and their projections are extensively distributed throughout the central nervous system. The aim of this study was to assess acetylcholinesterase activity in the rat brain after pneumococcal meningitis. In the hippocampus, frontal cortex and cerebrospinal fluid, acetylcholinesterase activity was found to be increased at 6, 12, 24, 48 and 96 hr without antibiotic treatment, and at 48 and 96 hr with antibiotic treatment. Our data suggest that acetylcholinesterase activity could be related to neuronal damage induced by pneumococcal meningitis.  相似文献   

19.
20.
Ornithine decarboxylase activity in some rat tissues was shown to grow at remote times after gamma irradiation (60Co) with nonlethal doses. The authors suggest that ornithine decarboxylase activity should be used as a biochemical marker of remote effects of ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号