首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the relationships between plant water status and leaf temperature, and between leaf temperature and spider mite (Acari: Tetranychidae) and predatory mite (Acari: Phytoseiidae) populations in eight vineyards in California in 2006 and 2007. Temperature of south-facing leaves increased significantly by 0.8°C for every 1.0°C increase in ambient air temperature, and by 5.3°C for every one MPa drop in leaf water potential. Peak population densities of Pacific spider mite, Tetranychus pacificus McGregor, increased significantly with increasing frequency of leaf temperatures above 31°C. In contrast, peak population densities of Willamette spider mite, Eotetranychus willamettei (McGregor), showed no relationship with the frequency of leaf temperatures above 31°C. This differential relationship between the two mite species and high leaf temperatures is consistent with their upper thresholds for development, which are 40°C for T. pacificus and 31°C for E. willamettei, as identified in a previous study. Predatory mite population densities showed no relationship with peak population densities of either spider mite species during the analysis period, but decreased with the frequency of leaf temperatures above 31°C. In addition, predatory mite population densities were significantly higher on south-facing than interior leaves after adjusting for the effect of leaf temperature. These results help to explain why outbreaks of T. pacificus occur in warmer or water-stressed vineyards, whereas E. willamettei develops higher populations in cooler or well-irrigated vineyards. In addition, these results suggest that regulated deficit irrigation should be implemented with caution, especially in those vineyards with a high risk of T. pacificus outbreaks.  相似文献   

2.
Developmental parameters of protogyne Calepitrimerus vitis (Nalepa) (Acari: Eriophyidae) were determined at 12, 15, 17, 22, 25, 28, 31, and 34 °C to better understand seasonal activity, population growth, and ultimately more effectively manage pest mites in wine grapes. Net reproductive rate (R(o)) was greater than zero at all temperatures with the maximum R(o) (9.72) at 25 °C. The lowest estimated R(o) (0.001) occurred at 34 °C. There was a gradual decrease in mean generation time (T) as temperatures increased from 17 to 31 °C. The shortest and longest generation time was recorded at 31 °C (T = 5.5 d) and 17 °C (T = 17.5 d). Rates of natural increase were lowest at 17°C (0.035) and increased with increasing temperatures, respectively. The peak rate of natural increase value (0.141) was at 25 °C. Estimations for minimum and maximum developmental thresholds were 10.51 and 39.19 °C, respectively, while the optimum developmental temperature was 26.9 °C. The thermal constant for egg to adult development was estimated at 87.7DD. The highest fecundity was observed at 25 °C. These parameters indicated that mites begin feeding at the onset of shoot growth when tissue is most susceptible in spring. Historical weather data showed that vines are in this susceptible growth stage for longer periods in the cool Willamette Valley compared with warmer Umpqua and Applegate/Rogue Valley regions. Estimation of degree-days indicated when deutogyne mites move to overwintering refuge sites. Degree-day accumulations indicated up to 14 generations per growing season.  相似文献   

3.
Laboratory bioassays were conducted to evaluate the effects of six vineyard pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae), a key predator of the mite Calepitrimerus vitis Nalepa (Acari: Eriophyoidae), in Pacific coastal vineyards. Materials tested were whey powder, 25% boscalid + 13% pyraclostrobin (Pristine), 40% myclobutanil (Rally), micronized sulfur (92% WP), 75% ethylene bisdithiocarbamate (mancozeb; Manzate), and 91.2% paraffinic oil (JMS Stylet), all applied at three concentrations. Pesticide dilutions were directly sprayed onto T. pyri adult females and juveniles, and each treatment was assessed to determine effects on direct mortality and fecundity. Five of the six pesticides tested resulted in < 50% mortality to adult and juvenile T. pyri for all concentrations 7 d after treatment. Paraffinic oil treatments displayed direct mortality > 50% for adult and juvenile assays and resulted in significantly higher mortality. Sublethal effects were more pronounced than acute pesticide toxicity, particularly in juvenile mite bioassays. Significant decreases in fecundity were detected in the sulfur and mancozeb treatments compared with the control in juvenile tests. The relative percentage of fecundity reduction for juvenile mites was highest when applying mancozeb (> 70%), sulfur (> 25%), or myclobutanil (> 20%). Adult mites displayed the greatest reductions in fecundity from applications of paraffinic oil (> 20%) or mancozeb (> 15%) treatments. Boscalid (+ pyraclostrobin) and whey displayed the least effect on fecundity across all bioassays. These results can be used to develop management guidelines in vineyard pest management practices to help conserve and enhance predatory mite populations.  相似文献   

4.
Temperature and food quality both can influence growth rates and developmental time of herbivorous insects and mites. Typhlodromus athenas Swirski and Ragusa is an indigenous mite in the Mediterranean region and data on its temperature dependent development are lacking. In the current study, temperature-dependent development and survival of T. athenas immature stages were evaluated on eggs and all stages of Tetranychus urticae Koch, as well as on almond (Prunus amygdalis Batsch) pollen, under seven constant temperatures ranging from 15 to 35°C, 65% RH, and a photoperiod of 16:8 (L:D) h. On both diets survival was considerably high at all temperatures. The longest developmental period of immature stages was recorded at 15°C, whereas the shortest was at 30°C. Female immatures on almond pollen had shorter developmental time compared to that on twospotted spider mites. Food had a significant effect on female total developmental time at temperatures lower than 25°C. The lower developmental thresholds, estimated by a linear model, for egg-to-adult of females and males fed on pollen were 8.60 and 8.77°C, respectively, whereas on T. urticae they were 10.15 and 10.62°C, respectively. Higher values of tmin for total development were estimated by a nonlinear model (Lactin-2), and ranged from 10.21°C for both females and males on almond, to 11.07 for females and 10.78°C for males on prey. Moreover, this model estimated optimal and lethal temperatures accurately. The results of this study indicate that T. athenas appears better adapted to higher temperatures that occur in the Mediterranean region and may be a useful biological control agent.  相似文献   

5.
Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni are generalist predatory mites important in controlling tetranychid and eriophyoid mites in European vineyards. They can persist by exploiting various non-prey foods when their main prey is absent or scarce. A comparative analysis of the effects of various prey and non-prey foods on the life history of these predators is lacking. In the laboratory, predatory mites were reared on herbivorous mites (Panonychus ulmi, Eotetranychus carpini and Colomerus vitis), a potential alternative prey (Tydeus caudatus) and two non-prey foods, i.e. the pollen of Typha latifolia and the mycelium of Grape downy mildew (GDM) Plasmopara viticola. Developmental times, survival, sex ratio and fecundity as well as life table parameters were estimated. Kampimodromus aberrans developed faster on E. carpini, C. vitis or pollen than on P. ulmi and laid more eggs on pollen than on prey. Low numbers of this predator developed on GDM infected leaves. Tydeus caudatus was not suitable as prey for any of the three predatory mites. Kampimodromus aberrans showed the highest intrinsic rate of population increase when fed on pollen. Developmental times of T. pyri on prey or pollen were similar but fecundity was higher on pollen than on P. ulmi. Typhlodromus pyri had higher intrinsic rates of population increase on C. vitis and pollen than on P. ulmi; E. carpini showed intermediate values whereas GDM resulted in the lowest r ( m ) values. Development of A. andersoni females was faster on pollen and C. vitis than on P. ulmi and GDM. Fecundity was higher on pollen and mites compared to GDM. Life table parameters of A. andersoni did not differ when predators were fed with prey or pollen while GDM led to a lower r ( m ) value. On a specific diet A. andersoni exhibited faster development and higher fecundity than T. pyri and K. aberrans. These findings improve knowledge on factors affecting the potential of predatory mites in controlling phytophagous mites in European vineyards.  相似文献   

6.
The effect of temperature on the development, survivorship, fecundity, and life table parameters of Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), was studied at seven constant temperatures of 17.5, 20, 22.5, 25, 27.5, 30, and 32.5°C. Preliminary experiments showed that no development was observed at 15 and 35°C. All individuals completed development and females laid eggs from 20 to 30°C. There was a significant decrease in male and female longevity with increasing temperatures from 20 to 30°C. The longest and shortest longevity were 203.5 and 73.7 d for males, and 178.7 and 57.6 d for females, respectively. Females produced on average 62.7, 88.9, 116.8, 70.0, and 47.3 eggs and the life expectancy for a newborn egg was 171.6, 148.7, 114.9, 89.2, and 94.8 d at 20, 22.5, 25, 27.5 and 30°C, respectively. Life history data were analyzed by using an age-stage, two-sex life table. The intrinsic rate of increase (r) and the finite rate of increase (λ) of O. nipae increased with increasing temperatures from 20 to 30°C, while the mean generation time (T) decreased within this temperature range. The r was 0.0155, 0.0249, 0.0339, 0.0361, and 0.0383 d(-1) at 20, 22.5, 25, 27.5, and 30°C, respectively. The net reproductive rate (r(0)) was highest at 25°C (35.0 offspring), and lowest at 20°C (17.0 offspring). T was shortest at 30°C (76.4 d). The results showed that temperature greatly affected the fecundity and life table parameters of O. nipae, and a suitable temperature for population development and fecundity was at 25°C. The life table data can be used for the projection of population growth and evaluation of control programs.  相似文献   

7.
We conducted a series of path analyses to determine which direct and indirect species interactions were most important in determining the within-season dynamics of apple rust mite (Aculus schlechtendali) (Eriophyidae) in a series of Nova Scotian (Canada) apple orchards. Typhlodromus pyri (Phytoseiidae) was usually more important than Zetzellia mali (Stigmaeidae) in the direct reduction of the apple rust mite population growth rate. When both predators contributed to lowering apple rust mite growth, T. pyri acted earlier in the season than did Z. mali. Predation by T. pyri was not affected by plant quality (nitrogen content or cultivar), but predation by Z. mali was enhanced by high nitrogen levels and was influenced by cultivar. There was little evidence of direct competition between Panonychus ulmi and apple rust mite in these orchards, possibly due to the low densities of P. ulmi. The indirect effects were generally smaller than the direct effects, but were occasionally important. Apparent competition between P. ulmi and apple rust mite was observed at times in some orchards, more often mediated by Z. mali than by T. pyri. Interference between the predator species was only occasionally strong enough to affect apple rust mite population dynamics.  相似文献   

8.
The developmental time, survival and reproduction of the cotton aphid, Aphis gossypii Glover (Hom., Aphididae), were evaluated on detached cotton leaves at five constant and two alternating temperatures (15, 20, 25, 30, 35, 25/30, and 30/35°C). The developmental periods of the immature stages ranged from 12.0 days at 15°C to 4.5 days at 30°C. A constant temperature of 35°C was lethal to the immature stages of A. gossypii. The lower developmental threshold for the cotton aphid was estimated at 6.2°C and it required 108.9 degree-days for a first instar to become adult. The average longevity of adult females was reduced from 39.7 days at 15°C to 12.6 days at 30/35°C. The average reproduction rate per female was 51.5 at 25/30°C and 20.9 at 30/35°C. Mean generation time of the population ranged from 10.4 days at 30°C to 24.5 days at 15°C. The largest per capita growth rate ( r m = 0.413) occurred at 30°C, the smallest at 15°C ( r m = 0.177). It was evident that temperatures over 30°C prolonged development, increased the mortality of the immature stages, shortened adult longevity, and reduced fecundity. The optimal range of temperature for population growth of A. gossypii on cotton was 25/30–30°C.  相似文献   

9.
In a three-year study, mite populations were monitored in two vineyards, each having two grape varieties with different leaf hair density. In both vineyards native phytoseiids were present: Amblyseius andersoni in one vineyard, and Phytoseius finitimus in the other. The economically important predators Kampimodromus aberrans and Typhlodromus pyri were released in both vineyards in order to study their efficacy in controlling tetranychids and eriophyids and their persistence during periods of prey scarcity. In both vineyards, relative abundances of the mite species, especially phytoseiids, were found to differ on different varieties in the same vineyard. In the first experiment, A. andersoni reached higher densities and was more persistent on the variety with slightly pubescent leaf under-surface (Merlot). Typhlodromus pyri and K. aberrans releases were successful and the mites became more abundant on the variety with pubescent leaf under-surface (Verduzzo). In the second experiment, P. finitimus was more abundant on a variety with pubescent leaf under-surface (Prosecco) than with glabrous leaf under-surface (Riesling). The most interesting results of the present study concerned the interactions between native and released predators. In the first vineyard, different results were obtained when releasing T. pyri on the two varieties. On the variety with pubescent leaves, A. andersoni was rapidly displaced by T. pyri, whereas the former species persisted on the other variety throughout the three-year study, apparently becoming dominant during the last season. In contrast to T. pyri, interactions between K. aberrans and A. andersoni in this vineyard did not depend on variety. The results of the experiments carried out in the second vineyard stressed the importance of interspecific competition for phytoseiid releases. Typhlodromus pyri colonization failed on both varieties. Kampimodromus aberrans releases appeared to be more successful on Riesling than on Prosecco, where P. finitimus was more abundant. At the end of the experiments, K. aberrans displaced P. finitimus on both varieties.  相似文献   

10.
The ‘Mikulov’ strain of the predatory mite Typhlodromus pyri Scheuten from south Moravian vineyards was released on cultivated strawberries infested with the two-spotted spider mite, Tetranychus urticae Koch. The strawberries were grown in field plantations and under glass. Typhlodromus pyri on vine shoots were successfully introduced into the field strawberry plantation but they produced no demonstrable control of the spider mites and they eventually declined in density with their prey. In contrast, T. pyri gave good control of spider mites in the glasshouse despite the occurrence of low humidity and water stress of the plants.  相似文献   

11.
The objective of this study was to determine the effect of storage temperature during ovary transport on the developmental competence of bovine oocytes for use in somatic cell nuclear transfer (SCNT). Ovaries obtained from a slaughterhouse were stored in physiological saline for 3-4h at one of the three temperatures: 15 °C, 25 °C, or 35 °C. The developmental competence of oocytes used for SCNT was ascertained by cleavage and blastocyst formation rate, total cell number, apoptosis index, and the relative abundance of Bax and Hsp70.1 in day 7 blastocysts. Ovaries stored at 35 °C for 3-4h reduced the recovery rate of grade I and II oocytes compared with those stored at 25 °C or 15 °C (45.1±0.7% vs. 76.7±1.2% or 74.8±2.0%, P<0.05). The proportion of oocytes matured to the MII stage (maturation rate) for oocytes stored at 35 °C was significantly lower than those stored at 25 °C or 15 °C (51.3±0.9% vs. 75.1±1.4% or 71.7±1.3%, P<0.05). Cleavage rate (77.7±2.1%, 77.9±1.1% and 72.1±0.7% for 15 °C, 25 °C and 35 °C groups, respectively) and blastocyst formation rate (39.1±0.5%, 36.8±1.4% and 32.2±0.9% for 15 °C, 25 °C and 35 °C groups, respectively) following SCNT were not significantly different between treatments. Oocytes from ovaries stored at 15 °C, however, produced blastocysts with higher cell numbers (97.3±8.6 vs. 80.2±10.8 or 77.4±11.7; P<0.05) and lower apoptotic index (5.1±1.3 vs. 13.5±1.6 or 18.6±1.1, P<0.05) than those stored at 25 °C or 35 °C. The relative abundance of Bax and Hsp70.1 in day 7 blastocysts produced from oocytes derived from ovaries stored at 15 °C was lower than those stored at 25 °C or 35 °C (P<0.05). It was concluded that a storage temperature of 15 °C for a 3-4h period had a significant beneficial effect on the quality and developmental competence of oocytes used for SCNT due to the alleviation of stresses on the oocytes compared with those subjected to storage temperatures of 25 °C or 35 °C.  相似文献   

12.
腐食酪螨在不同温度和营养条件下生长发育的比较研究   总被引:1,自引:0,他引:1  
刘婷  金道超  郭建军  李莉 《昆虫学报》2006,49(4):714-718
在12.5℃、15℃、20℃、25℃和30℃恒温下,用啤酒酵母粉和玉米粉为饲料,测定了不同温度和饲料条件下腐食酪螨Tyrophagus putrescentiae各个发育阶段和世代的发育历期,获得其在各条件下的发育起点温度和有效积温。结果表明,在本文的实验温度范围内,该螨的发育历期与温度呈负相关,即随着温度的升高发育历期缩短。在各发育阶段不同饲料条件下发育起点温度和有效积温都有所差异。用啤酒酵母粉作饲料时,腐食酪螨的全世代历期为48.04天(12.5℃下)和8.41天(30℃下),发育起点温度为10.18℃,有效积温为155.44 d·℃; 用玉米粉作饲料时,全世代历期为78.79天(12.5℃下)和10.77天(30℃下),发育起点温度为10.52℃,有效积温为208.33 d·℃。以成螨体长和体宽为指标,比较了在各温度条件及不同饲料条件对其生长的影响,结果表明不同饲料对螨体大小有显著影响,温度的影响不明显。  相似文献   

13.
Development, survival, and reproduction of the predatory mite Kampimodromus aberrans Oudemans were studied at constant temperatures in the range from 15 to 35 degrees C under laboratory conditions. Larval developmental rate for both males and females increased gradually from 15 to 35 degrees C and decreased at higher temperatures. Lactin's nonlinear model described with adequate accuracy the relationship between developmental rate and temperature. The model predicted that lower and upper threshold temperatures for preimaginal development ranged from 9.8 to 11.8 degrees C and from 37.2 to 39.8 degrees C, respectively. The intrinsic rate of population increase (rm) at the different temperatures ranged from 0.0442 to 0.1575, with the highest value recorded at 25 degrees C. At 33 degrees C a negative rm value was estimated. The rm values determined at different temperatures were fitted to Lactin's nonlinear model, and the lower and upper threshold and the optimal temperatures for population increase were 10.5, 32.4, and 27.6 degrees C, respectively. These data indicate that K. aberrans may be better adapted to intermediate temperatures around 27 degrees C and, therefore, could be a useful biocontrol agent of spider mites during spring and early summer when such temperatures are prevalent in northern Greece. The results could also be useful in developing a population model for K. aberrans under field conditions.  相似文献   

14.
The pest potential of stored product mites depends on the reproduction rate that is affected by the environmental conditions. In this study we investigated the effect of temperature, ranging from 5 to 35°C, on the population growth of three important mite species, Acarus siro, Tyrophagus putrescentiae and Auleroglyphus ovatus at 85% r.h. Starting with 10 individuals the population increase of mites was observed after 3 weeks of cultivation, or after 6 weeks for those kept at low temperatures (5, 10, 12.5, and 15°C). The rate of increase was calculated for each temperature and species. The obtained data were fitted with polynomial models. The mite population growth rates increased with increasing moderate temperatures until 25°C, when r m -values were 0.179, 0.177 and 0.190 for A. siro, A. ovatus and T. putrescentiae, respectively. The lower development threshold was 10.2°C in all three species. Estimated upper temperature threshold was higher in T. putrescentiae (49°C) than in A. siro and A. ovatus (38°C). Simulation of the rate of population increase under ideal conditions, using real temperature records obtained from Czech grain stores, showed that the pest mite populations increase only during 3.5 months within a typical 9-month storage season in Central Europe. These results indicate that control of mites, be it chemical, physical or biological, is recommended during the months when allergens and pests are produced, i.e. from September to mid November and in May.  相似文献   

15.
The tomato red spider mite, Tetranychus evansi, is reported as a severe pest of tomato and other solanaceous crops from Africa, from Atlantic and Mediterranean Islands, and more recently from the south of Europe (Portugal, Spain and France). A population of the predaceous mite Phytoseiulus longipes has been recently found in Brazil in association with T. evansi. The objective of this paper was to assess the development and reproduction abilities of this strain on T. evansi under laboratory conditions at four temperatures: 15, 20, 25 and 30°C. The duration of the immature phase ranged from 3.1 to 15.4 days, at 30 and 15°C, respectively. Global immature lower thermal threshold was 12.0°C. Immature survival was high at all temperatures tested (minimum of 88% at 30°C). The intrinsic rate of increase (r m) of P. longipes ranged from 0.091 to 0.416 female/female/day, at 15 and 30°C, respectively. P. longipes would be able to develop at a wide range of temperatures feeding on T. evansi and has the potential to control T. evansi populations.  相似文献   

16.
季洁  张艳璇  陈霞  林坚贞 《蛛形学报》2010,19(2):115-119
本研究进行了斯氏新小绥螨Neoseiulus swirskii (Athias-Henriot)以神泽氏叶螨Tetranychus kanzawai(Kishida)为猎物时,在15℃、18℃、20℃、25℃、30℃和35℃下的发育历期和实验种群生命表的研究,结果表明15℃时斯氏新小绥螨不能完成发育,18℃时仅少量个体能完成发育.在18~35℃之间,雌螨的发育历期为7.15~18.70 d,雄螨的发育历期为4.00~16.20 d.在20℃~35℃之间,斯氏新小绥螨的雌雄性比(♀∶♂)随着温度的升高而变小,20℃时性比最大(1.77),25℃时净增殖率(R0)最大(36.497),35℃时世代生长周期最短(15.433),30℃时内禀增长率(rm)和周限增长率(λ)均最大,分别为0.197和1.218,种群倍增时间(t)最短(3.513);随着温度的增加,斯氏新小绥螨的平均寿命逐渐变短,20℃时最长(73.40±1.26 d),35℃时最短(25.10±1.20d);25℃时每雌平均产卵量最高(60.44±1.51粒/雌),35℃时日平均产卵量最高(2.06±0.09粒/雌/d).  相似文献   

17.
The effect of temperature on development and survival of Chilocorus bipustulatus L. (Coleoptera: Coccinellidae), a predator of many scale insects, was studied under laboratory conditions. The duration of development of egg, first, second, third, and fourth larval instars, pupa, and preovioposition period at seven constant temperatures (15, 17.5, 20, 25, 30, 32.5, and 35°C) was measured. Development time decreased significantly with increasing temperature within the range 15-30°C. Survival was higher at medium temperatures (17.5-30(ο)C) in comparison with that at more extreme temperature regimens (15 and >30(ο)C). Egg and first larval instars were the stages where C. bipustulatus suffered the highest mortality levels at all temperatures. The highest survival was recorded when experimental individuals were older than the third larval instar. Thermal requirements of development (developmental thresholds, thermal constant, optimum temperature) of C. bipustulatus were estimated with application of linear and one nonlinear models (Logan I). Upper and lower developmental thresholds ranged between 35.2-37.9 and 11.1-13.0°C, respectively. The optimum temperature for development (where maximum rate of development occurs) was estimated at between 33.6 and 34.7°C. The thermal constant for total development was estimated 474.7 degree-days.  相似文献   

18.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

19.
Developmental times and survivorship of tarnished plant bug nymphs, Lygus lineolaris (Palisot de Beauvois), and longevity and reproduction of adult tarnished plant bug adults reared on green beans were studied at multiple constant temperatures. The developmental time for each life stage and the total time from egg to adult decreased with increasing temperature. Eggs required the longest time to develop followed by fifth instars and then first-instars. Total developmental time from egg to adult was shortest at 32°C, requiring 18.0 ± 0.3 d and 416.7 ± 31.3 DD above 7.9°C, the estimated minimum temperature for development from egg to adult. Sex did not affect total developmental times and did not affect median survival time. Adults lived significantly fewer days at high temperatures (30-32°C: 17-19 d) compared with temperatures below 30°C (range: 24.5-39.4 d) and the number of eggs laid per day increased from ≈ 4 at 18°C to a maximum of 9.5 eggs per day at 30°C. Total egg production over the lifetime of female tarnished plant bugs increased with temperature reaching a maximum of 175 eggs on average at 27°C, total egg production declined at temperatures above 27°C (30°C: 110.8, 32°C: 77.3 eggs per female). The highest net reproductive rate 74.5 (R(0)) was obtained from insects maintained at 27°C. The intrinsic rate of natural increase (r(m)) increased linearly with temperature to a maximum value of 0.1852 at 30°C, and then decreased at 32°C. Generation and doubling times of the population were shortest at 30°C, 21.0 and 3.7 d, respectively.  相似文献   

20.
Matriconditioning improved the performance of pepper, tomato, sweet corn, snap bean, table beet, sugar beet and watermelon seeds in early field plantings at suboptimal temperatures (averaged over 10 d after planting) ranging from 12 to 18 °C. Reduction in the time to 50% (T(50)) emergence in conditioned seeds ranged from 0·6 d in watermelon to 3·3 d in pepper and improvement in emergence from 10% in sugar beet to 30% in table beet. Further improvement in emergence occurred by inclusion of pesticides and/or gibberellin during conditioning. A 4 d conditioning of pepper at 25 °C was superior to 7 d conditioning at 15 °C in seeds germinated at 15 °C on filter paper, but 15 °C conditioning was superior in improving percentage emergence in early field plantings. Tomato seeds conditioned at 15 or 25 °C performed equally well in the field. A 2 d conditioning was superior to 1 d conditioning in improving the performance of supersweet sweet corn cultivars grown in a growth chamber at 10/20 °C. The water uptake rate in the presence of Micro-Cel E during matriconditioning of sweet corn seeds was slower than when the seeds were exposed to the same amount of water in absence of the carrier. Electrolyte leakage was greater in supersweet 'Challenger' sweet corn seeds carrying the sh(2) gene compared to the sugary type sweet corn 'More', and in both cases matriconditioning reduced the leakage. Lettuce seeds matriconditioned for 24 h had higher 1-aminocyclopropane-l-carboxylic acid (ACC) content, developed greater ACC oxidase activity and performed better at 10 °C (germinated earlier and had higher percentage germination) than the untreated seeds. Matriconditioning appears to bring about beneficial physical, physiological and biochemical changes that seemingly improve embryo growth potential and tolerance to low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号