首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.  相似文献   

3.
Corynebacterium glutamicum can utilize various monocyclic aromatic carbon sources, including protocatechuate, which is catabolized via the β-ketoadipate pathway. In order to obtain a global survey of occurring physiological adaptations on the proteome level, cytoplasmic and membrane fraction from cells grown on protocatechuate or glucose as sole carbon and energy source were compared. Shotgun proteomics and relative protein quantification with metabolic isotope labeling and spectral counting were employed. Altogether, 139 proteins were found to change their abundance during growth on protocatechuate. A general adaptation of energy metabolism to meet increased energy production by oxidative phosphorylation and a stress response occurred. Adjustments of carbon and amino acid metabolism in the cytoplasmic and membrane proteome were indicative of a starvation response. The different regulation of porins and cell wall biosynthesis proteins suggests a change in its architecture upon assimilation of the aromatic carbon source. Some of the observed changes could be explained by an involvement of the GlxR and McbR regulons.  相似文献   

4.
目的对Streptomyces coelicolorA3(2)M145中编码丝/苏氨酸蛋白激酶PrkC的基因SC03848进行功能初探。方法对PrkC蛋白序列进行生物信息学分析,在S.coelicolorA3(2)M145中敲除prkC基因,并进行互补、和过表达实验,对比突变菌株生长、次生代谢物产量、孢子萌发效率等。结果prkC基因在S.coelicolorA3(2)M145孢子萌发、生长、次生代谢等方面均起重要作用。结论prkC是一个多效调节基因,其具体生理功能和作用机制有待深入研究。  相似文献   

5.
6.
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H(2)-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H(2)-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MS(E). A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H(2) production via an electron transport mechanism and that CO(2) produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1.  相似文献   

7.
The intermediary metabolism of Haemophilus influenzae strain Rd KW20 was studied by a combination of protein expression analysis using a recently developed direct proteomics approach, mutational analysis, and mathematical modeling. Special emphasis was placed on carbon utilization, sugar fermentation, TCA cycle, and electron transport of H. influenzae cells grown microaerobically and anaerobically in a rich medium. The data indicate that several H. influenzae metabolic proteins similar to Escherichia coli proteins, known to be regulated by low concentrations of oxygen, were well expressed in both growth conditions in H. influenzae. An in silico model of the H. influenzae metabolic network was used to study the effects of selective deletion of certain enzymatic steps. This allowed us to define proteins predicted to be essential or non-essential for cell growth and to address numerous unresolved questions about intermediary metabolism of H. influenzae. Comparison of data from in vivo protein expression with the protein list associated with a genome-scale metabolic model showed significant coverage of the known metabolic proteome. This study demonstrates the significance of an integrated approach to the characterization of H. influenzae metabolism.  相似文献   

8.
In Gram-positive bacteria, the expression of iron-regulated genes is mediated by a class of divalent metal-dependent regulatory (DmdR) proteins. We cloned and characterized two dmdR genes of Streptomyces coelicolor that were located in two different nonoverlapping cosmids. Functional analysis of dmdR1 and dmdR2 was performed by deletion of each copy. Deletion of dmdR1 resulted in the derepression of at least eight proteins and in the repression of three others, as shown by 2D proteome analysis. These 11 proteins were characterized by MALDI-TOF peptide mass fingerprinting. The proteins that show an increased level in the mutant correspond to a DNA-binding hemoprotein, iron-metabolism proteins and several divalent metal-regulated enzymes. The levels of two other proteins--a superoxide dismutase and a specific glutamatic dehydrogenase--were found to decrease in this mutant. Complementation of the dmdR1-deletion mutant with the wild-type dmdR1 allele restored the normal proteome profile. By contrast, deletion of dmdR2 did not affect significantly the protein profile of S. coelicolor. One of the proteins (P1, a phosphatidylethanolamine-binding protein), overexpressed in the dmdR1-deleted mutant, is encoded by ORF3 located immediately upstream of dmdR2; expression of both ORF3 and dmdR2 is negatively controlled by DmdR1. Western blot analysis confirmed that dmdR2 is only expressed when dmdR1 is disrupted. Species of Streptomyces have evolved an elaborated regulatory mechanism mediated by the DmdR proteins to control the expression of divalent metal-regulated genes.  相似文献   

9.
10.
Degradation of 1,4-dioxane by an actinomycete in pure culture.   总被引:4,自引:1,他引:4       下载免费PDF全文
An actinomycete capable of sustained aerobic growth on 1,4-dioxane was isolated from a dioxane-contaminated sludge samples. The actinomycete, CB1190, grows on 1,4-dioxane as the sole carbon and energy source with a generation time of approximately 30 h. CB1190 degrades 1,4-dioxane at a rate of 0.33 mg of dioxane min-1 mg of protein-1 and mineralizes 59.5% of the dioxane to CO2. CB1190 also grows with other cyclic and linear ethers as the sole carbon and energy sources, including 1,3-dioxane, 2-methyl-1,3-dioxolane, tetrahydrofuran, tetrahydropyran, diethyl ether, and butyl methyl ether. CB1190 is capable of aerobic autotrophic growth on H2 and CO2.  相似文献   

11.
【目的】食烷菌是海洋烃类降解优势菌,其烷烃代谢调控机制有待深入研究。本研究拟从食烷菌转录和翻译水平上认识烷烃降解的调控过程。【方法】分别以乙酸和正十六烷(C16)为唯一碳源与能源,获取柴油食烷菌(Alcanivorax dieselolei) B5菌株的转录组和翻译组数据,并整合数据计算得到该菌在2种碳源培养条件下基因的翻译效率。采用基因本体论(gene ontology, GO)和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)对差异翻译和翻译效率基因进行功能和代谢通路注释。【结果】当以C16为唯一碳源与能源时,B5菌株烷烃代谢途径的关键基因在转录与翻译水平均大量提升,包括烷烃单加氧酶、细胞色素P450氧化酶、醇脱氢酶和醛脱氢酶等。KEGG富集结果表明,翻译水平显著上调基因参与了肽聚糖生物合成、脂肪酸降解、氯代烷烃降解、氧化磷酸化和生物膜形成等通路;翻译效率差异基因主要富集在铁载体非核糖体肽的生物合成、氧化磷酸化和不饱和脂肪酸的生物合成等途径。通过转录组和翻译组学的联合分析显示,为了适应烷烃氧化,B5有效地协调了转...  相似文献   

12.
In Ralstonia eutropha H16, seven genes encoding proteins being involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified. In order to provide more insights into the poly(3-hydroxybutyrate) (PHB)-leaky phenotype of the HPr/EI deletion mutants H16ΔptsH, H16ΔptsI, and H16ΔptsHI when grown on the non-PTS substrate gluconate, parallel fermentations for comparison of their growth behavior were performed. Samples from the exponential, the early stationary, and late stationary growth phases were investigated by microscopy, gas chromatography and (phospho-) proteome analysis. A total of 71 differentially expressed proteins were identified using 2D-PAGE, Pro-Q Diamond and Coomassie staining, and MALDI-TOF analysis. Detected proteins were classified into five major functional groups: carbon metabolism, energy metabolism, amino acid metabolism, translation, and membrane transport/outer membrane proteins. Proteome analyses revealed enhanced expression of proteins involved in the Entner-Doudoroff pathway and in subsequent reactions in cells of strain H16 compared to the mutant H16ΔptsHI. Furthermore, proteins involved in PHB accumulation showed increased abundance in the wild-type. This expression pattern allowed us to identify proteins affecting carbon metabolism/PHB biosynthesis in strain H16 and translation/amino acid metabolism in strain H16ΔptsHI, and to gain insight into the molecular response of R. eutropha to the deletion of HPr/EI.  相似文献   

13.
Molybdenum (Mo) is an essential micronutrient for plants. To obtain a better understanding of the molecular mechanisms of cold resistance enhanced by molybdenum application in winter wheat, we applied a proteomic approach to investigate the differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress. Of 13 protein spots that were identified, five spots were involved in the light reaction of photosynthesis, five were involved in the dark reaction of photosynthesis, and three were highly involved in RNA binding and protein synthesis. Before the application of cold stress, four differentially expressed proteins between the Mo deficiency (?Mo) vs. Mo application (+Mo) comparison are involved in carbon metabolism and photosynthetic electron transport. After 48 h of cold stress, nine differentially expressed proteins between the ?Mo vs. +Mo comparison are involved in carbon metabolism, photosynthetic electron transport, RNA binding, and protein synthesis. Under ?Mo condition, cold stress induced a more than twofold decrease in the accumulation of six differential proteins including ribulose bisphosphate carboxylase large-chain precursor, phosphoglycerate kinase, cp31BHv, chlorophyll a/b-binding protein, ribulose bisphosphate carboxylase small subunit, and ribosomal protein P1, whereas under +Mo condition cold stress only decreased the expression of RuBisCO large subunit, suggesting that Mo application might contribute to the balance or stability of these proteins especially under low-temperature stress and that Mo deficiency has greater influence on differential protein expression in winter wheat after low-temperature stress. Further investigations showed that Mo deficiency decreased the concentrations of chlorophyll a, chlorophyll b, and carotenoids; the maximum net photosynthetic rate; the apparent quantum yield; and carboxylation efficiency, even before the application of the cold stress, although the decrease rates were greater after 48 h of cold treatment, which is consistent with changes in the expressions of differential proteins in winter wheat under low-temperature stress. These findings provide some new evidence that Mo might be involved in the light and dark reaction of photosynthesis and protein synthesis.  相似文献   

14.
Wang SL  Fan KQ  Yang X  Lin ZX  Xu XP  Yang KQ 《Journal of bacteriology》2008,190(11):4061-4068
Ca(2+) was reported to regulate spore germination and aerial hypha formation in streptomycetes; the underlying mechanism of this regulation is not known. cabC, a gene encoding an EF-hand calcium-binding protein, was disrupted or overexpressed in Streptomyces coelicolor M145. On R5- agar, the disruption of cabC resulted in denser aerial hyphae with more short branches, swollen hyphal tips, and early-germinating spores on the spore chain, while cabC overexpression significantly delayed development. Manipulation of the Ca(2+) concentration in R5- agar could reverse the phenotypes of cabC disruption or overexpression mutants and mimic mutant phenotypes with M145, suggesting that the mutant phenotypes were due to changes in the intracellular Ca(2+) concentration. CabC expression was strongly activated in aerial hyphae, as determined by Western blotting against CabC and confocal laser scanning microscopy detection of CabC::enhanced green fluorescent protein (EGFP). CabC::EGFP fusion proteins were evenly distributed in substrate mycelia, aerial mycelia, and spores. Taken together, these results demonstrate that CabC is involved in Ca(2+)-mediated regulation of spore germination and aerial hypha formation in S. coelicolor. CabC most likely acts as a Ca(2+) buffer and exerts its regulatory effects by controlling the intracellular Ca(2+) concentration.  相似文献   

15.
The complete understanding of the morphological differentiation of streptomycetes is an ambitious challenge as diverse sensors and pathways sensitive to various environmental stimuli control the process. Germination occupies a particular position in the life cycle as the good achievement of the process depends on events occurring both during the preceding sporulation and during germination per se. The cyclic AMP receptor protein (crp) null mutant of Streptomyces coelicolor, affected in both sporulation and germination, was therefore presented as a privileged candidate to highlight new proteins involved in the shift from dormant to germinating spores. Our multidisciplinary approach-combining in vivo data, the analysis of spores morphological properties, and a proteome study-has shown that Crp is a central regulatory protein of the life cycle in S. coelicolor; and has identified spores proteins with statistically significant increased or decreased expression that should be listed as priority targets for further investigations on proteins that trigger both ends of the life cycle.  相似文献   

16.
17.
A glucose kinase (glkA) mutant of Streptomyces coelicolor A3(2) M145 was selected by the ability to grow in the presence of the nonmetabolizable glucose analog 2-deoxyglucose. In this glkA mutant, carbon catabolite repression of glycerol kinase and agarase was relieved on several carbon sources tested, even though most of these carbon sources are not metabolized via glucose kinase. This suggests that catabolite repression is not regulated by the flux through glucose kinase and that the protein itself has a regulatory role in carbon catabolite repression. A 10-fold overproduction of glucose kinase also results in relief of catabolite repression, suggesting that excess glucose kinase can titrate the repressing signal away. This could be achieved directly by competition of excess glucose kinase with its repressing form for binding sites on DNA promoter regions or indirectly by competition for binding of another regulatory protein.  相似文献   

18.
A proteomic approach was used to analyze protein changes during nitrogen mobilization (N mobilization) from leaves to filling seeds in pea (Pisum sativum). First, proteome reference maps were established for mature leaves and stems. They displayed around 190 Coomassie Blue-stained spots with pIs from 4 to 7. A total of 130 spots were identified by mass spectrometry as corresponding to 80 different proteins implicated in a variety of cellular functions. Although the leaf proteome map contained more abundant spots, corresponding to proteins involved in energy/carbon metabolism, than the stem map, their comparison revealed a highly similar protein profile. Second, the leaf proteome map was used to analyze quantitative variations in leaf proteins during N mobilization. Forty percent of the spots showed significant changes in their relative abundance in the total protein extract. The results confirmed the importance of Rubisco as a source of mobilizable nitrogen, and suggested that in pea leaves the rate of degradation of Rubisco may vary throughout N mobilization. Correlated with the loss of Rubisco was an increase in relative abundance of chloroplastic protease regulatory subunits. Concomitantly, the relative abundance of some proteins related to the photosynthetic apparatus (Rubisco activase, Rubisco-binding proteins) and of several chaperones increased. A role for these proteins in the maintenance of a Rubisco activation state and in the PSII repair during the intense proteolytic activity within the chloroplasts was proposed. Finally, two 14-3-3-like proteins, with a potential regulatory role, displayed differential expression patterns during the massive remobilization of nitrogen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号