首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The plant root system is important for plant anchorage and nutrition. Among the different characteristics of the root system, root branching is a major factor of plasticity and adaptation to changing environments. Indeed, many biotic and abiotic stresses, such as drought or symbiotic interactions, influence root branching. Many studies concerning root development and root branching were performed on the model plant Arabidopsis thaliana, but this model plant has a very simplified root structure and is not able to establish any symbiotic interactions. We have recently described 7 stages for lateral root development in the model legume Medicago truncatula and found significant differences in the tissular contribution of root cell layers to the formation of new lateral roots (LR). We have also described 2 transgenic lines expressing the DR5:GUS and DR5:VENUS-N7 reporter genes that are useful to follow LR formation at early developmental stages. Here, we describe the use of these transgenic lines to monitor LR developmental responses of M. truncatula to the phytohormone abscisic acid (ABA) which is a major actor of stress and symbiotic interactions. We show that ABA promotes the formation of new lateral root primordia and their development, mostly at the late, pre-emergence stage.  相似文献   

2.
Li X  Mo X  Shou H  Wu P 《Plant & cell physiology》2006,47(8):1112-1123
In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.  相似文献   

3.
The homosporous fern Ceratopteris richardii exhibits a homorhizic root system where roots originate from the shoot system. These shoot-borne roots form lateral roots (LRs) that arise from the endodermis adjacent to the xylem poles, which is in contrast to flowering plants where LR formation arises from cell division in the pericycle. A detailed study of the fifth shoot-borne root showed that one lateral root mother cell (LRMC) develops in each two out of three successive merophytes. As a result, LRs emerge alternately in two ranks from opposite positions on a parent root. From LRMC initiation to LR emergence, three developmental stages were identified based on anatomical criteria. The addition of auxins (either indole-3-acetic acid or indole-3-butyric acid) to the growth media did not induce additional LR formation, but exogenous applications of both auxins inhibited parent root growth rate. Application of the polar auxin-transport inhibitor N-(1-naphthyl)phthalamic acid (NPA) also inhibited parent root growth without changing the LR initiation pattern. The results suggest that LR formation does not depend on root growth rate per se. The result that exogenous auxins do not promote LR formation in C. richardii is similar to reports for certain species of flowering plants, in which there is an acropetal LR population and the formation of the LRs is insensitive to the application of auxins. It also may indicate that different mechanisms control LR development in non-seed vascular plants compared with angiosperms, taking into consideration the long and independent evolutionary history of the two groups.  相似文献   

4.
Lateral Root Initiation or the Birth of a New Meristem   总被引:9,自引:0,他引:9  
Root branching happens through the formation of new meristems out of a limited number of pericycle cells inside the parent root. As opposed to shoot branching, the study of lateral root formation has been complicated due to its internal nature, and a lot of questions remain unanswered. However, due to the availability of new molecular tools and more complete genomic data in the model species Arabidopsis, the probability to find new and crucial elements in the lateral root formation pathway has increased. Increasingly more data are supporting the idea that lateral root founder cells become specified in young root parts before differentiation is accomplished. Next, pericycle founder cells undergo anticlinal asymmetric, divisions followed by an organized cell division pattern resulting in the formation of a new organ. The whole process of cell cycle progression and stimulation of the molecular pathway towards lateral root initiation is triggered by the plant hormone auxin. In this review, we aim to give an overview on the developmental events taking place from the very early specification of founder cells in the pericycle until the first anticlinal divisions by combining the knowledge originating from classical physiology studies with new insights from genetic-molecular analyses. Based on the current knowledge derived from recent genetic and developmental studies, we propose here a hypothetical model for LRI.  相似文献   

5.
Plant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.  相似文献   

6.
7.
BACKGROUND AND AIMS: The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. METHODS: The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. KEY RESULTS: LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. CONCLUSIONS: In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted.  相似文献   

8.
The embryonically preformed primary root is the first root type of maize that emerges after germination. In this study the abundant soluble proteins of 2.5-day-old primary roots of wild-type and lateral root mutant rum1 seedlings were compared before the initiation of lateral roots. In CBB-stained 2-D gels, among 350 detected proteins 14 were identified as differentially accumulated (>twofold change; t-test: 95% significance) in wild-type versus rum1 primary roots. These proteins which were identified via ESI MS/MS are encoded by 12 different genes. Functionally, these proteins are involved in lignin biosynthesis, defense, and the citrate cycle. Nine of these genes were further analyzed at the RNA expression level. This study represents the first comparative proteomic analysis of maize primary roots prior to lateral root initiation and will contribute to a better understanding of the molecular basis of root development in cereals.  相似文献   

9.
Root system architecture depends on lateral root (LR) initiation that takes place in a relatively narrow developmental window (DW). Here, we analyzed the role of auxin gradients established along the parent root in defining this DW for LR initiation. Correlations between auxin distribution and response, and spatiotemporal control of LR initiation were analyzed in Arabidopsis thaliana and tomato (Solanum lycopersicum). In both Arabidopsis and tomato roots, a well defined zone, where auxin content and response are minimal, demarcates the position of a DW for founder cell specification and LR initiation. We show that in the zone of auxin minimum pericycle cells have highest probability to become founder cells and that auxin perception via the TIR1/AFB pathway, and polar auxin transport, are essential for the establishment of this zone. Altogether, this study reveals that the same morphogen-like molecule, auxin, can act simultaneously as a morphogenetic trigger of LR founder cell identity and as a gradient-dependent signal defining positioning of the founder cell specification. This auxin minimum zone might represent an important control mechanism ensuring the LR initiation steadiness and the acropetal LR initiation pattern.  相似文献   

10.
11.
In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.  相似文献   

12.
Environmental Regulation of Lateral Root Initiation in Arabidopsis   总被引:18,自引:0,他引:18       下载免费PDF全文
Plant morphology is dramatically influenced by environmental signals. The growth and development of the root system is an excellent example of this developmental plasticity. Both the number and placement of lateral roots are highly responsive to nutritional cues. This indicates that there must be a signal transduction pathway that interprets complex environmental conditions and makes the "decision" to form a lateral root at a particular time and place. Lateral roots originate from differentiated cells in adult tissues. These cells must reenter the cell cycle, proliferate, and redifferentiate to produce all of the cell types that make up a new organ. Almost nothing is known about how lateral root initiation is regulated or coordinated with growth conditions. Here, we report a novel growth assay that allows this regulatory mechanism to be dissected in Arabidopsis. When Arabidopsis seedlings are grown on nutrient media with a high sucrose to nitrogen ratio, lateral root initiation is dramatically repressed. Auxin localization appears to be a key factor in this nutrient-mediated repression of lateral root initiation. We have isolated a mutant, lateral root initiation 1 (lin1), that overcomes the repressive conditions. This mutant produces a highly branched root system on media with high sucrose to nitrogen ratios. The lin1 phenotype is specific to these growth conditions, suggesting that the lin1 gene is involved in coordinating lateral root initiation with nutritional cues. Therefore, these studies provide novel insights into the mechanisms that regulate the earliest steps in lateral root initiation and that coordinate plant development with the environment.  相似文献   

13.
14.
Growth substances, α-naphthaleneacetic (NAA) and kinetin, had an important role in the regulation of lateral root (LR) formation in lettuce ( Lactuca sativa L. cv. Grand Rapids) seedling roots. NAA (10-5 M ) was a potent stimulator of LR initiation and caused a 600% increase in the number of lateral root primordia (LRP) compared to untreated roots. NAA was required for only the first 20 h of the 72 h treatment period for maximum stimulation of LRP initiation. Kinetin (2 × 10-5 M ) effectively prevented the spontaneous formation of LRP and inhibited the NAA-stimulated production of LRP. Kinetin inhibition was maximal during the first 20 h of NAA treatment and this effect was not overcome by subsequent supply of NAA. Also, lettuce roots were most sensitive to kinetin at 20 h of NAA treatment, when the first signs of cell division were observed in the pericycle.  相似文献   

15.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   

16.
It has been proposed that the acropetal initiation of lateral roots is a built‐in process specified as part of the general process of cell division and differentiation in the parent root tip. Conversely, it is commonly reported that root branching is essentially a variable feature. In the present study, the interlateral distance along the parent root has been investigated using three banana varieties (Musa spp.) grown in two substrates. The pattern of lateral root initiation was obscured by variations of root growth patterns and vascular structure among roots, genotypes and substrates. A framework model is formulated showing the influence of growth pattern and vascular structure on branching density. The model raises a distinction between growth components which should not affect the branching density (i.e. rate of cell division) and which may affect it (i.e. size of mature cells and number of transverse divisions performed by cells executing their trajectory in the meristem). It appears also that lateral root density and root growth rate might be independently modulated by appropriate changes of root growth patterns, in banana and presumably many other taxa.  相似文献   

17.
Hormone interactions during lateral root formation   总被引:2,自引:0,他引:2  
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.  相似文献   

18.
Postembryonically formed shoot-borne roots make up the major backbone of the adult maize root stock. In this study the abundant soluble proteins of the first node (coleoptilar node) of wild-type and mutant rtcs seedlings, which do not initiate crown roots, were compared at two early stages of crown root formation. In Coomassie Bluestained 2-D gels, representing soluble proteins of coleoptilar nodes 5 and 10 days after germination, 146 and 203 proteins were detected, respectively. Five differentially accumulated proteins (> two-fold change; t-test: 95% significance) were identified in 5-day-old and 14 differentially accumulated proteins in 10-day-old coleoptilar nodes of wild-type versus rtcs. All 19 differentially accumulated proteins were identified via ESI MS/MS mass spectrometry. Five differentially accumulated proteins, including a regulatory G-protein and a putative auxin-binding protein, were further analyzed at the RNA expression level. These experiments confirmed differential gene expression and revealed subtle developmental regulation of these genes during early coleoptilar node development. This study represents the first proteomic analysis of shoot-borne root initiation in cereals and will contribute to a better understanding of the molecular basis of this developmental process unique to cereals.  相似文献   

19.
Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号