首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The maize (Zea mays L.) rum1‐R (rootless with undetectable meristems 1‐Reference) mutant does not initiate embryonic seminal roots and post‐embryonic lateral roots at the primary root. Map‐based cloning revealed that Rum1 encodes a 269 amino acid (aa) monocot‐specific Aux/IAA protein. The rum1‐R protein lacks 26 amino acids including the GWPPV degron sequence in domain II and part of the bipartite NLS (nuclear localization sequence). Significantly reduced lateral root density (approximately 35%) in heterozygous plants suggests that the rum1‐R is a semi‐dominant mutant. Overexpression of rum1‐R under the control of the maize MSY (Methionine SYnthase) promoter supports this notion by displaying a reduced number of lateral roots (31–37%). Functional characterization suggests that Rum1 is auxin‐inducible and encodes a protein that localizes to the nucleus. Moreover, RUM1 is unstable with a half life time of approximately 22 min while the mutant rum1‐R protein is very stable. In vitro and in vivo experiments demonstrated an interaction of RUM1 with ZmARF25 and ZmARF34 (Z. mays AUXIN RESPONSE FACTOR 25 and 34). In summary, the presented data suggest that Rum1 encodes a canonical Aux/IAA protein that is required for the initiation of embryonic seminal and post‐embryonic lateral root initiation in primary roots of maize.  相似文献   

3.
4.
Members of the ADP-ribosylation factor family, which are GTP-binding proteins, are involved in metabolite transport, cell division, and expansion. Although there has been a significant amount of research on small GTP-binding proteins, their roles and functions in regulating maize kernel size remain elusive. Here, we identified ZmArf2 as a maize ADP-ribosylation factor-like family member that is highly conserved during evolution. Maize zmarf2 mutants showed a characteristic smaller kernel size. Conversely, ZmArf2 overexpression increased maize kernel size. Furthermore, heterologous expression of ZmArf2 dramatically elevated Arabidopsis and yeast growth by promoting cell division. Using expression quantitative trait loci (eQTL) analysis, we determined that ZmArf2 expression levels in various lines were mainly associated with variation at the gene locus. The promoters of ZmArf2 genes could be divided into two types, pS and pL, that were significantly associated with both ZmArf2 expression levels and kernel size. In yeast-one-hybrid screening, maize Auxin Response Factor 24 (ARF24) is directly bound to the ZmArf2 promoter region and negatively regulated ZmArf2 expression. Notably, the pS and pL promoter types each contained an ARF24 binding element: an auxin response element (AuxRE) in pS and an auxin response region (AuxRR) in pL, respectively. ARF24 binding affinity to AuxRR was much higher compared with AuxRE. Overall, our results establish that the small G-protein ZmArf2 positively regulates maize kernel size and reveals the mechanism of its expression regulation.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The isolation and detailed characterisation of the maize mutant lrt1 , which is completely deficient in the initiation of lateral roots at the primary and seminal lateral roots and of the crown roots at the coleoptilar node is described. The monogenic and recessive mutant was isolated from a segregating EMS mutagenised population, maps to the short arm of chromosome 2, and acts independently of the nodal root deficient rtcs locus. Histological analysis revealed that the mutation acts at a very early stage of root initiation, as indicated by the absence of primordia formation in the affected roots. At later stages of plant development lateral and crown root initiations recover leading to fertile plants. If grown in the dark, the mutant does not form an elongated mesocotyl, although the photomorphogenic response appears to be normal in the mutant. Furthermore, the wild-type cannot be rescued from mutants by the application of auxin to germinating kernels. The gene impaired in lrt1 seems to be of great importance for the general mechanism of early post-embryonic root initiation, both from root and nodal tissues, since lateral and crown root initiation are both affected to the same extent and in the same transient time pattern.  相似文献   

14.
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes encode proteins harboring a conserved amino acid domain, referred to as the LOB (for lateral organ boundaries) domain. While recent studies have revealed developmental functions of some LBD genes in Arabidopsis (Arabidopsis thaliana) and in crop plants, the biological functions of many other LBD genes remain to be determined. In this study, we have demonstrated that the lbd18 mutant evidenced a reduced number of lateral roots and that lbd16 lbd18 double mutants exhibited a dramatic reduction in the number of lateral roots compared with lbd16 or lbd18. Consistent with this observation, significant β-glucuronidase (GUS) expression in ProLBD18:GUS seedlings was detected in lateral root primordia as well as in the emerged lateral roots. Whereas the numbers of primordia of lbd16, lbd18, and lbd16 lbd18 mutants were similar to those observed in the wild type, the numbers of emerged lateral roots of lbd16 and lbd18 single mutants were reduced significantly. lbd16 lbd18 double mutants exhibited additively reduced numbers of emerged lateral roots compared with single mutants. This finding indicates that LBD16 and LBD18 may function in the initiation and emergence of lateral root formation via a different pathway. LBD18 was shown to be localized into the nucleus. We determined whether LBD18 functions in the nucleus using a steroid regulator-inducible system in which the nuclear translocation of LBD18 can be regulated by dexamethasone in the wild-type, lbd18, and lbd16 lbd18 backgrounds. Whereas LBD18 overexpression in the wild-type background induced lateral root formation to some degree, other lines manifested the growth-inhibition phenotype. However, LBD18 overexpression rescued lateral root formation in lbd18 and lbd16 lbd18 mutants without inducing any other phenotypes. Furthermore, we demonstrated that LBD18 overexpression can stimulate lateral root formation in auxin response factor7/19 (arf7 arf19) mutants with blocked lateral root formation. Taken together, our results suggest that LBD18 functions in the initiation and emergence of lateral roots, in conjunction with LBD16, downstream of ARF7 and ARF19.The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes (hereafter referred to as LBD) encode proteins harboring a LOB (for lateral organ boundaries) domain, which is a conserved amino acid domain that is detected only in plants, indicative of its function in plant-specific processes (Iwakawa et al., 2002; Shuai et al., 2002). There are 42 Arabidopsis (Arabidopsis thaliana) LBD genes, which have been assigned to two classes. Class I comprises 36 genes and class II comprises six genes (Iwakawa et al., 2002; Shuai et al., 2002). The class I proteins harbor LOB domains similar to those observed in the LOB protein, whereas the class II proteins are less similar to the class I proteins, which include the LOB domain as well as regions outside of the LOB domain. The LOB domain is approximately 100 amino acids in length and harbors a conserved 4-Cys motif with CX2CX6CX3C spacing, a Gly-Ala-Ser block, and a predicted coiled-coil motif with LX6LX3LX6L spacing, reminiscent of the Leu zipper found in the majority of class I proteins (Shuai et al., 2002). None of the class II proteins were predicted to form coiled-coil structures.Although we currently understand very little about the biological roles of the LBD genes, there have been some reports describing the developmental functions of LBD genes in Arabidopsis on the basis of gain-of-function studies. The gain-of-function mutants of LBD36/ASL1, designated downwards siliques1, showed shorter internodes and downward lateral organs such as flowers (Chalfun-Junior et al., 2005). Although the lbd36 loss-of-function mutants did not show morphological phenotypes, the analysis of lbd36 as2 double mutants showed that these two members act redundantly to control cell fate determination in the petals. Another Arabidopsis gain-of-function mutant, jagged lateral organs-D (jlo-D), generates strongly lobed leaves and the shoot apical meristem prematurely arrests organ initiation, terminating in a pin-like structure (Borghi et al., 2007). During embryogenesis, JLO (=LBD30/ASL19) is necessary for the initiation of cotyledons and development beyond the globular stage. The results of misexpression experiments indicate that during postembryonic development, JLO function is required for the initiation of plant lateral organs. A recent study showed that the LOB domain of AS2 cannot be functionally replaced by those of other members of the LOB family, indicating that dissimilar amino acid residues in the LOB domains are important for characteristic functions of the family members (Matsumura et al., 2009).Thirty-five LBD genes in rice (Oryza sativa) have been identified from the genome sequences of the two rice subspecies, a japonica rice (Nippobare) and an indica rice (9311; Yang et al., 2006). Analyses of rice mutants have provided evidence of the involvement of a variety of rice LBD genes in lateral organ development. CROWN ROOTLESS1 (CRL1), encoding a LBD protein, is crucial for crown root formation in rice (Inukai et al., 2005). The crl1 mutant showed auxin-related phenotypes, such as decreased lateral root number, auxin insensitivity in lateral root formation, and impaired root gravitropism. A rice AUXIN RESPONSE FACTOR (ARF) appears to directly regulate CRL1 expression in the auxin signaling pathway (Inukai et al., 2005). ADVENTITIOUS ROOTLESS1 encodes an auxin-responsive protein with a LOB domain that controls the initiation of adventitious root primordia in rice and turned out to be the same gene as CRL1 (Liu et al., 2005).Lateral roots of Arabidopsis are derived from a subset of the pericycle cells (pericycle founder cells), which are positioned at the xylem poles within the parent root tissues (Casimiro et al., 2003). The mature pericycle cells dedifferentiate to form lateral root primordium (LRP), which undergoes consistent anticlinal and periclinal cell divisions to generate a highly organized LRP (Malamy and Benfey, 1997). The LRP emerges from the parent root via cell expansion, and the activation of the lateral root meristem results in continued growth of the organized lateral root. A growing body of physiological and genetic evidence has been collected to suggest that auxin plays a profound role in lateral root formation. For example, many auxin-related mutants have been shown to affect lateral root formation (Casimiro et al., 2003). Lateral root formation in Arabidopsis was shown to be regulated by ARF7 and ARF19 via the direct activation of LBD16 and LBD29/ASL16 (Okushima et al., 2007). Overexpression of LBD16 and LBD29 induced lateral root formation in the absence of ARF7 and ARF19, and the dominant repression of LBD16 inhibited lateral root formation, thus suggesting that these LBDs function downstream of ARF7- and ARF19-mediated auxin signaling during lateral root formation. The results of selection and binding assays demonstrated that a truncated LOB protein harboring only the conserved LOB domain can preferentially bind to unique DNA sequences, which is indicative of a DNA-binding protein (Husbands et al., 2007). Recently, LBD18 was shown to regulate tracheary element differentiation (Soyano et al., 2008).In this study, we demonstrated that LBD18 is involved in the regulation of lateral root formation, based on the analysis of loss-of-function mutants and the complementation of lbd18 and lbd16 lbd18 mutants by dexamethasone (DEX)-inducible LBD18 expression. Double mutations in LBD16 and LBD18 resulted in a synergistic reduction in the number of lateral roots, particularly in initiation and emergence, compared with either the lbd16 or lbd18 single mutant. This finding is suggestive of a combinatorial interaction of LBD16 and LBD18 in the process of lateral root formation. LBD18 expression in arf7 and arf19 mutants by the DEX-inducible system increased the number of lateral roots, thus demonstrating that LBD18 functions downstream of ARF7 and ARF19 in lateral root formation.  相似文献   

15.
In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.  相似文献   

16.
Lateral root (LR) formation is important for the establishment of root architecture in higher plants. Recent studies have revealed that LR formation is regulated by an auxin signaling pathway that depends on auxin response factors ARF7 and ARF19, and auxin/indole‐3‐acetic acid (Aux/IAA) proteins including SOLITARY‐ROOT (SLR)/IAA14. To understand the molecular mechanisms of LR formation, we isolated a recessive mutant rlf (reduced lateral root formation) in Arabidopsis thaliana. The rlf‐1 mutant showed reduction of not only emerged LRs but also LR primordia. Analyses using cell‐cycle markers indicated that the rlf‐1 mutation inhibits the first pericycle cell divisions involved in LR initiation. The rlf‐1 mutation did not affect auxin‐induced root growth inhibition but did affect LR formation over a wide range of auxin concentrations. However, the rlf‐1 mutation had almost no effect on auxin‐inducible expression of LATERAL ORGAN BOUNDARIES‐DOMAIN16/ASYMMETRIC LEAVES2‐LIKE18 (LBD16/ASL18) and LBD29/ASL16 genes, which are downstream targets of ARF7/19 for LR formation. These results indicate that ARF7/19‐mediated auxin signaling is not blocked by the rlf‐1 mutation. We found that the RLF gene encodes At5g09680, a protein with a cytochrome b5‐like heme/steroid binding domain. RLF is ubiquitously expressed in almost all organs, and the protein localizes in the cytosol. These results, together with analysis of the genetic interaction between the rlf‐1 and arf7/19 mutations, indicate that RLF is a cytosolic protein that positively controls the early cell divisions involved in LR initiation, independent of ARF7/19‐mediated auxin signaling.  相似文献   

17.
Although the importance of auxin in root development is well known, the molecular mechanisms involved are still unknown. We characterized a rice (Oryza sativa) mutant defective in crown root formation, crown rootless1 (crl1). The crl1 mutant showed additional auxin-related abnormal phenotypic traits in the roots, such as decreased lateral root number, auxin insensitivity in lateral root formation, and impaired root gravitropism, whereas no abnormal phenotypic traits were observed in aboveground organs. Expression of Crl1, which encodes a member of the plant-specific ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES protein family, was localized in tissues where crown and lateral roots are initiated and overlapped with beta-glucuronidase staining controlled by the DR5 promoter. Exogenous auxin treatment induced Crl1 expression without de novo protein biosynthesis, and this induction required the degradation of AUXIN/INDOLE-3-ACETIC ACID proteins. Crl1 contains two putative auxin response elements (AuxREs) in its promoter region. The proximal AuxRE specifically interacted with a rice AUXIN RESPONSE FACTOR (ARF) and acted as a cis-motif for Crl1 expression. We conclude that Crl1 encodes a positive regulator for crown and lateral root formation and that its expression is directly regulated by an ARF in the auxin signaling pathway.  相似文献   

18.
19.
20.
We have used an antibody against the functional homolog of the cdc2 kinase of maize to localize the p34cdc2 protein within dividing cells of the root apex and the stomatal complex of leaf epidermis. The microtubule cytoskeletal structure of plant cells was visualized concomitantly with a monoclonal antibody specific for [alpha]-tubulin. We found that the cdc2 protein is localized mainly to the nucleus in plant cells at interphase and early prophase. This finding contrasts markedly with the predominantly cytoplasmic staining obtained using antibody to the PSTAIRE motif, which is common to cdc2 and numerous cdc2-like proteins. In a subpopulation of root cells at early prophase, the p34cdc2 protein is also distributed in a band bisecting the nucleus. Double labeling with the maize p34cdc2Zm antibody and tubulin antibody revealed that this band colocalizes with the preprophase band (PPB) of microtubules, which predicts the future division site. Root cells in which microtubules had been disrupted with oryzalin did not contain this band of p34cdc2 protein, suggesting that formation of the microtubule PPB is necessary for localization of the p34cdc2 kinase to the plane of the PPB. The p34cdc2 protein is also localized to the nucleus and PPB in cells that give rise to the stomatal complex, including those cells preparing for the highly asymmetrical divisions that produce subsidiary cells. Association of the p34cdc2 protein with the PPB suggests that the cdc2 kinase has a role in establishing the division site of plant cells and, therefore, a role in plant morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号