首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of disease-specific articles, outlining the challenges surrounding the clinical translation of stem cell therapeutics.  相似文献   

2.
Niches regulate lineage-specific stem cell self-renewal versus differentiation in vivo and are composed of supportive cells and extracellular matrix components arranged in a three-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients.  相似文献   

3.
4.
5.
6.
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.  相似文献   

7.
8.
9.
10.
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.  相似文献   

11.
12.
13.
14.
15.
16.
Stem cell-based regeneration depends partly on the delivery of stem cells to the damaged area. Recently in Nature Medicine, Sackstein et al. (2008) report that ex vivo fucosylation of surface CD44 promoted efficient adhesive interactions of manipulated mesenchymal stem cells with marrow vasculature and subsequent homing to endosteal surfaces.  相似文献   

17.
Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. Now, a report from the Chen laboratory (Ruiz and Chen, 2008) describes an approach that represents a major step toward a more profound understanding of the geometric-force control of stem cell differentiation.  相似文献   

18.
Hematopoietic stem cell self-renewal   总被引:3,自引:0,他引:3  
  相似文献   

19.
20.
In this issue of Cell Stem Cell, Csaszar et al. (2012) develop a culture method that overcomes current limitations in ex vivo hematopoietic stem/progenitor cell expansion by continuously diluting inhibitory signaling factors and maintaining stem cell density. This approach enhances the generation of precursors with potential therapeutic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号