首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydronicotinamide riboside (NRH):quinone oxidoreductase 2 (NQO2) is a flavoenzyme that catalyzes the reductive metabolism of quinones. To examine the in vivo role of NQO2, NQO2-null (NQO2-/-) mice were generated using targeted gene disruption. Mice lacking NQO2 gene expression showed no detectable developmental abnormalities and were indistinguishable from wild-type (NQO2+/+) mice. However, NQO2-null mice exhibited myeloid hyperplasia of the bone marrow and increased neutrophils, basophils, eosinophils, and platelets in the peripheral blood. Decreased apoptosis of bone marrow cells and circulating granulocytes contributed to myeloid hyperplasia and hyperactivity of bone marrow in NQO2-null mice. The hematological changes in NQO2-/- mice were specifically associated with loss of the NQO2 gene because histological analysis of various tissues including spleen, thymus, blood cultures, and urine analysis demonstrated no sign of infection. NQO2-null mice also demonstrated decreased toxicity when exposed to menadione or menadione with NRH. These results establish a role for NQO2 in protection against myelogenous hyperplasia and in metabolic activation of menadione, leading to hepatic toxicity. The NQO2-null mice are a model for NQO2 deficiency in humans and can be used to determine the role of this enzyme in sensitivities to toxicity and carcinogenesis.  相似文献   

2.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

3.
IL-13 is a central mediator of airway hyperresponsiveness and mucus expression, both hallmarks of asthma. IL-13 is found in the sputum of patients with asthma; therefore, IL-13 is an attractive drug target for treating asthma. We have shown previously that IL-13 inhibits Th17 cell production of IL-17A and IL-21 in vitro. Th17 cells are associated with autoimmune diseases, host immune responses, and severe asthma. In this study, we extend our in vitro findings and determine that IL-13 increases IL-10 production from Th17-polarized cells and that IL-13-induced IL-10 production negatively regulates the secretion of IL-17A and IL-21. To determine if IL-13 negatively regulates lung IL-17A expression via an IL-10-dependent mechanism in vivo, we used a model of respiratory syncytial virus (RSV) strain A2 infection in STAT1 knockout (KO) mice that increases lung IL-17A and IL-13 expression, cytokines not produced during RSV infection in wild-type mice. To test the hypothesis that IL-13 negatively regulates lung IL-17A expression, we created STAT1/IL-13 double KO (DKO) mice. We found that RSV-infected STAT1/IL-13 DKO mice had significantly greater lung IL-17A expression compared with that of STAT1 KO mice and that increased IL-17A expression was abrogated by anti-IL-10 Ab treatment. RSV-infected STAT1/IL-13 DKO mice also had increased neutrophil infiltration compared with that of RSV-infected STAT1 KO mice. Neutralizing IL-10 increased the infiltration of inflammatory cells into the lungs of STAT1 KO mice but not STAT1/IL-13 DKO mice. These findings are vital to understanding the potential side effects of therapeutics targeting IL-13. Inhibiting IL-13 may decrease IL-10 production and increase IL-17A production, thus potentiating IL-17A-associated diseases.  相似文献   

4.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that utilizes NAD(P)H as an electron donor, catalyzing the two-electron reduction and detoxification of quinones and their derivatives. NQO1-/- mice deficient in NQO1 activity and protein were generated in our laboratory (Rajendirane, V., Joseph, P., Lee, Y. H., Kimura, S., Klein-Szanto, A. J. P., Gonzalez, F. J., and Jaiswal, A. K. (1998) J. Biol. Chem. 273, 7382-7389). Mice lacking a functional NQO1 gene (NQO1-/-) were born normal and reproduced adeptly as the wild-type NQO1+/+ mice. In the present report, we show that NQO1-/- mice exhibit significantly lower levels of abdominal adipose tissue as compared with the wild-type mice. The NQO1-/- mice showed lower blood levels of glucose, no change in insulin, and higher levels of triglycerides, beta-hydroxy butyrate, pyruvate, lactate, and glucagon as compared with wild-type mice. Insulin tolerance test demonstrated that the NQO1-/- mice are insulin resistant. The NQO1-/- mice livers also showed significantly higher levels of triglycerides, lactate, pyruvate, and glucose. The liver glycogen reserve was found decreased in NQO1-/- mice as compared with wild-type mice. The livers and kidneys from NQO1-/- mice also showed significantly lower levels of pyridine nucleotides but an increase in the reduced/oxidized NAD(P)H:NAD(P) ratio. These results suggested that loss of NQO1 activity alters the intracellular redox status by increasing the concentration of NAD(P)H. This leads to a reduction in pyridine nucleotide synthesis and reduced glucose and fatty acid metabolism. The alterations in metabolism due to redox changes result in a significant reduction in the amount of abdominal adipose tissue.  相似文献   

5.
IL-7Ralpha-chain-deficient (IL-7Ralpha-/-) and common gamma chain-deficient (gammac-/-) mice both exhibit abnormal thymic and intestinal intraepithelial lymphocyte (IEL) development, but the developmental inhibition is not equivalent. In this report, we assessed whether the defects in T cell development associated with gammac-/- mice were due to currently defined gammac-dependent cytokines by cross-breeding IL-7Ralpha-/- mice to mice lacking either IL-2, IL-4, or IL-2Rbeta. IL-2/IL-7Ralpha and IL-4/IL-7Ralpha double knockout (DKO) mice demonstrated equivalent thymic development to IL-7Ralpha-/- mice, whereas IL-2Rbeta/IL-7Ralpha DKO mice, which lack IL-2, IL-7, and IL-15 signaling, displayed thymic T cell defects identical to gammac-/- mice. Collectively, these data indicate that of the gammac-dependent cytokines, only IL-7 and IL-15 contribute to the progression and production of thymic T cells. In the IEL, IL-7Ralpha-/- mice selectively lack CD8alphaalpha TCRgammadelta cells, whereas IL-2Rbeta-/- mice show a significant reduction in all CD8alphaalpha cells. IL-2-/- and IL-2/IL-7Ralpha DKO mice demonstrated a reduction in CD8alphaalpha IELs to nearly the same extent as IL-2Rbeta-/- mice, indicating that IL-2 functions in CD8alphaalpha IEL development. Moreover, IL-2Rbeta/IL-7Ralpha DKO mice lacked nearly all TCR-bearing IEL, again recapitulating the phenotype of gammac-/- mice. Thus, these data point to the importance of IL-2, IL-7, and IL-15 as the gammac-dependent cytokines essential for IEL development.  相似文献   

6.
WSX-1 (IL-27R) is a class I cytokine receptor with homology to gp130 and IL-12 receptors and is typically expressed on CD4+ T lymphocytes. Although previous reports have clarified that IL-27/WSX-1 signaling plays critical roles in both Th1 differentiation and attenuation of cell activation and proinflammatory cytokine production during some bacterial or protozoan infections, little is known about the importance of WSX-1 in cytokine-mediated diseases of allergic origin. To this aim, we took advantage of WSX-1-deficient (WSX-1(-/-)) mice and induced experimental asthma, in which Th2 cytokines are central modulators of the pathology. OVA-challenged WSX-1(-/-) mice showed marked enhancement of airway responsiveness with goblet cell hyperplasia, pulmonary eosinophil infiltration, and increased serum IgE levels compared with wild-type mice. Production of Th2 cytokines, which are largely responsible for the pathogenesis of asthma, was augmented in the lung or in the culture supernatants of peribronchial lymph node CD4+ T cells from WSX-1(-/-) mice compared with those from wild-type mice. Surprisingly, IFN-gamma production was also enhanced in WSX-1(-/-) mice, albeit at a low concentration. The cytokine overproduction, thus, seems independent from the Th1-promoting property of WSX-1. These results demonstrated that IL-27/WSX-1 also plays an important role in the down-regulation of airway hyper-reactivity and lung inflammation during the development of allergic asthma through its suppressive effect on cytokine production.  相似文献   

7.
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI).The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo.IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation.We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice.Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6,TNF-α,G-CSF,KC,and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/-mice in comparison with that of wild type infected mice.The adaptive immune response against the H1N1 virus in IL-1R1-/-mice was impaired with downregulated anti-viral Th1 cell,CD8+ cell,and antibody functions,which contributes to attenuated viral clearance.Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/-mice compared with that in WT infected mice.Moreover,the infected IL-1R1-/-mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung.Together,these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury,particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.  相似文献   

8.
NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) are cytosolic enzymes that catalyze metabolic reduction of quinones and derivatives. NQO1-null and NQO2-null mice were generated that showed decreased lymphocytes in peripheral blood, myeloid hyperplasia, and increased sensitivity to skin carcinogenesis. In this report, we investigated the in vivo role of NQO1 and NQO2 in immune response and autoimmunity. Both NQO1-null and NQO2-null mice showed decreased B-cells in blood, lower germinal center response, altered B cell homing, and impaired primary and secondary immune responses. NQO1-null and NQO2-null mice also showed susceptibility to autoimmune disease as revealed by decreased apoptosis in thymocytes and pre-disposition to collagen-induced arthritis. Further experiments showed accumulation of NADH and NRH, cofactors for NQO1 and NQO2, indicating altered intracellular redox status. The studies also demonstrated decreased expression and lack of activation of immune-related factor NF-kappaB. Microarray analysis showed altered chemokines and chemokine receptors. These results suggest that the loss of NQO1 and NQO2 leads to altered intracellular redox status, decreased expression and activation of NF-kappaB, and altered chemokines. The results led to the conclusion that NQO1 and NQO2 are endogenous factors in the regulation of immune response and autoimmunity.  相似文献   

9.
Lung surfactant protein A (SP-A) and D (SP-D) are innate immune molecules which are known to interact with allergens and immune cells and modulate cytokine and chemokine profiles during host hypersensitivity response. We have previously shown therapeutic effects of SP-A and SP-D using a murine model of lung hypersensitivity to Aspergillus fumigatus (Afu) allergens. In this study, we have examined the susceptibility of SP-A (AKO) or SP-D gene-deficient (DKO) mice to the Afu allergen challenge, as compared with the wild-type mice. Both AKO and DKO mice exhibited intrinsic hypereosinophilia and several-fold increase in levels of IL-5 and IL-13, and lowering of IFN-gamma to IL-4 ratio in the lungs, suggesting a Th2 bias of immune response. This Th2 bias was reversible by treating AKO or DKO mice with SP-A or SP-D, respectively. The AKO and DKO mice showed distinct immune responses to Afu sensitization. DKO mice were found more susceptible than wild-type mice to pulmonary hypersensitivity induced by Afu allergens. AKO mice were found to be nearly resistant to Afu sensitization. Intranasal treatment with SP-D or rhSP-D (a recombinant fragment of human SP-D containing trimeric C-type lectin domains) was effective in rescuing the Afu-sensitized DKO mice, while SP-A-treated Afu-sensitized AKO mice showed several-fold elevated levels of IL-13 and IL-5, resulting in increased pulmonary eosinophilia and damaged lung tissue. These data reaffirm an important role for SP-A and SP-D in offering resistance to pulmonary allergenic challenge.  相似文献   

10.
Dual roles of IL-4 in lung injury and fibrosis   总被引:15,自引:0,他引:15  
Increased lung IL-4 expression in pulmonary fibrosis suggests a potential pathogenetic role for this cytokine. To dissect this role, bleomycin-induced pulmonary inflammation and fibrosis were analyzed and compared in wild type (IL-4(+/+)) vs IL-4-deficient (IL-4(-/-)) mice. Lethal pulmonary injury after bleomycin treatment was higher in IL-4(-/-) vs IL-4(+/+) mice. By administration of anti-CD3 Abs, we demonstrated that this early response was linked to the marked T lymphocyte lung infiltration and to the overproduction of the proinflammatory mediators such as TNF-alpha, IFN-gamma, and NO in IL-4(-/-) mice. In contrast to this early anti-inflammatory/immunosuppressive role, during later stages of fibrosis, IL-4 played a profibrotic role since IL-4(-/-) mice developed significantly less pulmonary fibrosis relative to IL-4(+/+) mice. However, IL-4 failed to directly stimulate proliferation, alpha-smooth muscle actin, and type I collagen expression in lung fibroblasts isolated from the wild-type mice. Upon appropriate stimulation with other known fibrogenic cytokines, fibroblasts from IL-4(-/-) mice were relatively deficient in the studied parameters in comparison to fibroblasts isolated from IL-4(+/+) mice. Taken together, these data suggest dual effects of IL-4 in this model of lung fibrosis: 1) limiting early recruitment of T lymphocytes, and 2) stimulation of fibrosis chronically.  相似文献   

11.
The role of interleukin (IL)-18 in the protection from interstitial pneumonia and pulmonary fibrosis induced by bleomycin (BLM) was investigated by comparing the severity of BLM-induced lung injuries between wild-type and C57BL/6 mice with a targeted knockout mutation of the IL-18 gene (IL-18-/- mice). IL-18-/- mice showed much worse lung injuries than wild-type mice, as assessed by the survival rate, histological images, and leukocyte infiltration in the bronchoalveolar lavage fluid and myeloperoxidase activity. In wild-type mice, administration of IL-18 before BLM instillation resulted in suppression of lung injuries, increases in the hydroxyproline content, and decreases in the granulocyte-macrophage colony-stimulating factor content in the lung. Preadministration of IL-18 also resulted in prevention of the reduction of the lung IL-10 content caused by BLM-induced damage of alveolar epithelial. BLM instillation suppressed superoxide dismutase (SOD) activity in IL-18-/- mice to a greater extent than in wild-type mice. Pretreatment of IL-18 augmented Mn-containing superoxide dismutase (Mn-SOD) messenger RNA expression and SOD activity in the lung and prevented the reduction of SOD activity caused by BLM in both wild-type and IL-18-/- mice. These results suggest that IL-18 plays a protective role against BLM-induced lung injuries by upregulating a defensive molecule, Mn-SOD.  相似文献   

12.
IL-21 is a cytokine with pleiotropic actions, promoting terminal differentiation of B cells, increased Ig production, and the development of Th17 and T follicular helper cells. IL-21 is also implicated in the development of autoimmune disease and has antitumor activity. In this study, we investigated the role of IL-21 in host defense to pneumonia virus of mice (PVM), which initiates an infection in mice resembling that of respiratory syncytial virus disease in humans. We found that PVM-infected mice expressed IL-21 in lung CD4(+) T cells. Following infection, Il21r(-/-) mice exhibited less lung infiltration by neutrophils than did wild-type (WT) mice and correspondingly had lower levels of the chemokine CXCL1 in bronchoalveolar lavage fluid and lung parenchyma. CD8(+), CD4(+), and γδ T cell numbers were also lower in the lungs of PVM-infected Il21r(-/-) mice than in infected WT mice, with normal Th17 cytokines but diminished IL-6 production in PVM-infected Il21r(-/-) mice. Strikingly, Il21r(-/-) mice had enhanced survival following PVM infection, and moreover, treatment of WT mice with soluble IL-21R-Fc fusion protein enhanced their survival. These data reveal that IL-21 promotes the pathogenic inflammatory effect of PVM and indicate that manipulating IL-21 signaling may represent an immunomodulatory strategy for controlling PVM and potentially other respiratory virus infections.  相似文献   

13.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

14.
NADPH: quinone oxidoreductase 1 (NQO1) and dihydronicotinamide riboside: quinone oxidoreductase 2 (NQO2) are cytosolic enzymes that catalyze reductive activation of carcinogens from cigarette smoke, such as nitrosamines and heterocyclic amines. These enzymes also protect cells against oxidative damage from reactive oxygen species. The present study investigated the associations of genetic variants of NQO1 609C>T and NQO2 -3423G>A polymorphisms with susceptibility to gastric cancer (GC) as well as their interactions with known risk factors in Kashmir valley. A case control study was performed in 303 subjects (108 GC and 195 healthy controls). All subjects were genotyped using polymerase chain reaction-restriction fragment length polymorphism method. Data were statistically analyzed by chi-square test and logistic regression model. The NQO1 609C>T TT genotype and T allele were significantly associated with increased risk for GC, whereas NQO2 -3423G>A polymorphism did not show any association with GC. Also, NQO1 609C>T TT genotype showed significant association with gastric adenocarcinoma. The interaction of NQO1/NQO2 genotypes with high consumption of salted tea, a known risk factor, did not further modulate the risk of GC. In conclusion, NQO1 609C>T polymorphism shows association with GC risk in Kashmir valley.  相似文献   

15.
Somatostatin (SST) is a peptide hormone that exerts inhibitory effects mediated through binding to specific cell surface G protein-coupled receptors, of which five distinct subtypes (SSTR1-SSTR5) have been characterized. Our study performed on mouse cochlear hair cells shows the expression and localization of the three receptors (SSTR3-SSTR5) in wild-type (WT), single-knockout (SSTR1 KO) and double-knockout SSTR1/SSTR2 (DKO) mice. Similar SSTRs expression were observed in the inner hair cells (IHC), outer hair cells (OHC) and supporting cells of cultivated P7 mouse organ of Corti (OC) explants as well as in cultivated cochlear neuroepithelial supporting cells (NEsc). We found differences in the expression of SSTR3-5 in WT, SSTR1 KO and DKO mouse cochlea, which might be explained as a compensatory effect in the cochlea after the loss of SSTR1 and/or SSTR2.  相似文献   

16.
We recently used a murine model of allergic airway inflammation to show that poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the pathogenesis of asthma-related lung inflammation. In this study, we show that PARP-1 inhibition, by a novel inhibitor (TIQ-A) or by gene deletion, prevented eosinophilic infiltration into the airways of OVA-challenged mice. Such impairment of eosinophil recruitment appeared to take place after IgE production. OVA challenge of wild-type mice resulted in a significant increase in IL-4, IL-5, IL-10, IL-13, and GM-CSF secretions. Although IL-4 production was moderately affected in OVA-challenged PARP-1(-/-) mice, the production of IL-5, IL-10, IL-13, and GM-CSF was completely inhibited in ex vivo OVA-challenged lung cells derived from these animals. A single TIQ-A injection before OVA challenge in wild-type mice mimicked the latter effects. The marked effect PARP-1 inhibition exerted on mucus production corroborated the effects observed on the Th2 response. Although PARP-1 inhibition by gene knockout increased the production of the Th1 cytokines IL-2 and IL-12, the inhibition by TIQ-A exerted no effect on these two cytokines. The failure of lung cells derived from OVA-challenged PARP-1(-/-) mice to synthesize GM-CSF, a key cytokine in eosinophil recruitment, was reestablished by replenishment of IL-5. Furthermore, intranasal administration of IL-5 restored the impairment of eosinophil recruitment and mucus production in OVA-challenged PARP-1(-/-) mice. The replenishment of either IL-4 or IgE, however, did not result in such phenotype reversals. Altogether, these results suggest that PARP-1 plays a critical role in eosinophil recruitment by specifically regulating the cascade leading to IL-5 production.  相似文献   

17.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in the pathogenesis of inflammation, using a mouse contact hypersensitivity (CHS) model induced by 2,4-dinitro-1-fluorobenzene (DNFB). Ear swelling was induced by challenge with DNFB, accompanied by infiltration of mononuclear cells, neutrophils, and eosinophils and a marked increase in mRNA levels of cytokines such as interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-1beta, IL-18, and tumor necrosis factor-alpha in the challenged ear skin. Both ear swelling and the number of infiltrated cells in DNFB-challenged ear skin were significantly inhibited by treatment with SB202190, a p38 inhibitor. Furthermore, the DNFB-induced expression of all cytokines except IL-4 was significantly inhibited by treatment with SB202190. Ribonuclease protection assay revealed that the mRNA levels of chemokines such as IP-10 and MCP-1 in ear skin were markedly increased at 24 h after challenge with DNFB. The induction of these chemokines was significantly inhibited by treatment with SB202190. In p38alpha +/- mice, both ear swelling and infiltration of cells induced by DNFB were reduced compared with those in wild-type mice. However, induction of cytokines by DNFB was also observed in p38alpha +/- mice, although the induction of IFN-gamma, IL-5, and IL-18 was typically reduced compared with that in wild-type mice. Challenge with DNFB slightly induced IP-10 and MCP-1 mRNA in p38alpha +/- mice, with weaker signals than those in SB202190-treated wild-type mice. These results suggest that p38 plays a key role in CHS and is an important target for the treatment of CHS.  相似文献   

18.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

19.
Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48-72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo(-/-)) and wild-type mice were exposed to ozone or to room air. In wild-type mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone-induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, keratinocyte-derived chemokine, LPS-induced CXC chemokine, and G-CSF were augmented in Adipo(-/-) versus wild-type mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo(-/-) versus wild-type mice. Moreover, compared with control Ab, anti-IL-17A Ab attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo(-/-) but not in wild-type mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo(-/-) mice. Flow cytometric analysis of lung cells revealed that the number of CD45(+)/F4/80(+)/IL-17A(+) macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wild-type mice and further increased in Adipo(-/-) mice. The IL-17(+) macrophages were CD11c(-) (interstitial macrophages), whereas CD11c(+) macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended low-dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells.  相似文献   

20.
Long DJ  Jaiswal AK 《Gene》2000,252(1-2):107-117
The mouse NQO2 cDNA and gene with flanking regions were cloned and sequenced. Analysis of the primary structure of the mouse NQO2 protein revealed the presence of glycosylation, myristylation, protein kinase C and caseine kinase II phosphorylation sites. These sites are conserved in the human NQO2 protein. The mouse NQO2 gene promoter contains several important cis-elements, including the antioxidant response element (ARE), the xenobiotic response element (XRE), and an Sp1 binding site. Northern analysis of eight mouse tissues indicated wide variations in the expression of the NQO2 and NQO1 genes. NQO2 gene expression was higher in liver and testis compared with the NQO1 gene, which was highest in the heart. NQO1 gene expression was undetectable in the testis. Mouse kidney showed significantly higher expression levels of NQO1 compared with NQO2. Brain, spleen, lung, and skeletal muscle showed undetectable levels of NQO2 and NQO1 gene expression. NQO2 activity followed a more or less similar pattern of tissue-specific expression as NQO2 RNA. Interestingly, the NQO2 activity remained unchanged in the NQO1-/-mice tissues compared with NQO1+/+ mice, with the exception of the liver. The livers from NQO1-/-mice showed a 45% increase in NQO2 activity compared with the NQO1+/+ mice. The mouse NQO2 cDNA was subcloned into the pMT2 eukaryotic expression vector which, upon transfection in monkey kidney COS1 cells, produced a significant increase in NQO2 activity. Deletion of 54 amino acids from the N-terminus of the mouse NQO2 protein resulted in the loss of NQO2 expression and activity in transfected COS1 cells. This indicates that deletion of exon(s) encoding the N-terminus of NQO2 from the endogenous gene in mouse embryonic (ES) stem cells should result in NQO2-null mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号