首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Heme oxygenase (HO)-1 catalyzes the oxidative cleavage of heme to yield equimolar amounts of biliverdin, iron, and carbon monoxide. HO-1 is a stress response protein, the induction of which is associated with protection against oxidative stress. The mechanism(s) of protection is not completely elucidated, although it is suggested that one or more of the catalytic by-products provide antioxidant functions either directly or indirectly. The involvement of reactive oxygen species in apoptosis raised the question of a possible role for HO-1 in programmed cell death. Using the tetracycline-regulated expression system, we show here that conditional overexpression of HO-1 prevents tumor necrosis factor-alpha-induced apoptosis in murine L929 fibroblasts. Inhibition of apoptosis was not observed in the presence of tin protoporphyrin, a specific inhibitor of HO activity, and in cells overexpressing antisense HO-1. Interestingly, exogenous administration of a low concentration of carbon monoxide also prevented tumor necrosis factor-alpha-induced apoptosis in L929 fibroblasts. Inhibition of tumor necrosis factor-alpha-induced apoptosis by HO-1 overexpression was reversed by 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one, an inhibitor of guanylate cyclase, which is a target enzyme for carbon monoxide. Taken together, our data suggest that the antiapoptotic effect of HO-1 may be mediated via carbon monoxide.  相似文献   

2.
A productive angiogenic response must couple to the survival machinery of endothelial cells to preserve the integrity of newly formed vessels. Angiopoietin-1 (Ang-1) is an endothelium-specific ligand essential for embryonic vascular stabilization, branching morphogenesis, and post-natal angiogenesis, but its contribution to endothelial cell survival has not been completely elucidated. Here we show that Ang-1 acting via the Tie 2 receptor induces phosphorylation of the survival serine-threonine kinase, Akt (or protein kinase B). This is associated with up-regulation of the apoptosis inhibitor, survivin, in endothelial cells and protection of endothelium from death-inducing stimuli. Moreover, dominant negative survivin negates the ability of Ang-1 to protect cells from undergoing apoptosis. The activation of anti-apoptotic pathways mediated by Akt and survivin in endothelial cells may contribute to Ang-1 stabilization of vascular structures during angiogenesis, in vivo.  相似文献   

3.
4.
Heme oxygenase-1 (HO-1), the rate-limiting enzyme of heme catabolism, is known to modulate various cellular functions, including cytokine production, cell proliferation, and apoptosis, in stress-related conditions. However, the role of HO-1 in the auditory system remains elusive. Herein, we demonstrate that pharmacologic induction of HO-1 along with catalytic activation significantly suppressed apoptosis of HEI-OC1 cells induced by cisplatin. Studies of ectopic expression of pcDNA3-HO-1 and siRNA of HO-1 further revealed the protective role of HO-1 against cisplatin in HEI-OC1 cells. Among the catabolic metabolites of HO-1, both carbon monoxide (CO) and bilirubin were directly involved in the protective role of HO-1 against cisplatin through inhibition of reactive oxygen species generation. Furthermore, pharmacological induction of HO-1 completely prevented the destruction of outer hair cell arrays by cisplatin through a CO-dependent mechanism in organotrophic culture of the rat primary organ of Corti explants. These results suggest that HO-1 may serve as a safeguard of auditory sensory hair cells against a variety of challenges of oxidative stress, including noise trauma, presbycusis, and ototoxic drugs, respectively.  相似文献   

5.
Mast cells release many inflammatory mediators that play an important role not only in allergic diseases but also in chronic inflammatory diseases, autoimmune diseases, and others. A lot of mast cells exist in synovium of rheumatoid arthritis, and it is known that synovitis does not occur in mast cell-deficient mice. Thus, it is thought that mast cells play a very important role in rheumatoid arthritis pathogenesis. Leflunomide is a drug used clinically in the treatment of rheumatoid arthritis. We used clinical doses of 2-cyano-3-hydroxy-N-(4-trifluoromethylphenyl)-butenamide (A77 1726), which is an active metabolite of leflunomide, and decreased the number of viable human primary mast cells in a concentration-dependent manner. This decrease was not reversed by uridine. Inhibition of pyrimidine synthesis by dihydro-orotic acid dehydrogenase inhibition, which is the primary mechanism of action of A77 1726, was not involved. A77 1726 dramatically induced apoptosis of human mast cells and inhibited the phosphorylation of Akt, an important survival signal of mast cells, in a concentration-dependent manner. Caspases 3 and 9, downstream molecules of Akt survival pathway, were also fragmented by A77 1726. In addition, it became evident for the first time that the mechanism involved in this result was the concentration-dependent inhibition of PDK1 phosphorylation, which controls the activation of Akt. These results indicate a new way of controlling mast cells and may therefore be the basis for innovative approaches to the treatment of various diseases related to mast cells.  相似文献   

6.
Canstatin, a 24-kDa peptide derived from the C-terminal globular non-collagenous (NC1) domain of the alpha2 chain of type IV collagen, was previously shown to induce apoptosis in cultured endothelial cells and to inhibit angiogenesis in vitro and in vivo. In this report, we demonstrate that canstatin inhibits the phosphorylation of Akt, focal adhesion kinase, mammalian target of rapamycin, eukaryotic initiation factor-4E-binding protein-1, and ribosomal S6 kinase in cultured human umbilical vein endothelial cells. It also induces Fas ligand expression, activates procaspases 8 and 9 cleavage, reduces mitochondrial membrane potential, and increases cell death (as determined by propidium iodide staining). Canstatin-induced activation of procaspases 8 and 9 as well as the induced reduction in mitochondrial membrane potential and cell viability were attenuated by the forced expression of FLICE-inhibitory protein. Canstatin-induced procaspase 8 activation and cell death were also inhibited by a neutralizing anti-Fas antibody. Collectively, these data indicate that canstatin-induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependent upon signaling events transduced through membrane death receptors.  相似文献   

7.
8.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

9.
Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.  相似文献   

10.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

11.
12.
13.
14.
Shi DY  Liu HL  Stern JS  Yu PZ  Liu SL 《FEBS letters》2008,582(12):1667-1671
We report here that alpha-lipoic acid (alpha-LA), a naturally-occurring antioxidant, scavenges reactive oxygen species (ROS) followed by an increase in apoptosis of human hepatoma cells. Apoptosis induced by alpha-LA was dependent upon the activation of the caspase cascade and the mitochondrial death pathway. alpha-LA induced increases in caspase-9 and caspase-3 but had no significant effect on caspase-8 activity. Apoptosis induced by alpha-LA was found to be mediated through the tensin homologue deleted on chromosome 10 (PTEN)/Akt pathway. Prior to cell apoptosis, PTEN was activated and its downstream target Akt was inhibited. Our findings indicate that increasing ROS scavenging could be a therapeutic strategy to treat cancer.  相似文献   

15.
16.
Although multiple mechanisms have been implicated in chemoresistance, recent evidence has suggested that the attachment of cells to extracellular matrix proteins such as fibronectin (FN) may mediate the signals that participate in cell survival and resistance to apoptosis. We established previously that human ovarian cancer cells and breast cancer cells adhering to FN acquire a survival advantage through activation of the PI3-kinase/Akt2 pathway. However, the mechanism by which Akt2 regulates chemoresistance in adherent cells is unknown. In the present study, we have investigated the role of the interaction between the Akt2/survivin survivial pathway and the ASK1/p38 apoptotic pathway in the phenomenon of resistance to docetaxel. We show here that the resistance of FN-adhered A2780 or MDA-MB-231 cells to docetaxel requires survivin, and we present evidence that attenuation of the antiapoptotic activity of survivin is p38-dependent. The activation of p38 kinase in response to docetaxel, on the other hand, is abolished by FN adhesion. We further demonstrate that FN adhesion-mediated inhibition of p38 activation was governed by Akt2 via the promotion of direct protein association of ASK1 with p38. Our results indicate for the first time that p38 plays a critical role in FN adhesion-mediated resistance to docetaxel. The present findings may help us to understand the formation of FN adhesion-mediated chemoresistance and facilitate development of novel antineoplastic strategies. Note: Hui Xing and yang Chao contributed equally to this work.  相似文献   

17.
Piperine is a major component of black pepper, Piper nigrum Linn, used widely in traditional medicine. In this study, we examined whether piperine could protect House Ear Institute-Organ of Corti 1 (HEI-OC1) cells against cisplatin-induced apoptosis through the induction of heme oxygenase (HO)-1 expression. Piperine (10-100 microM) induced the expression of HO-1 in dose- and time-dependent manners. Piperine also induced antioxidant response element-luciferase and translocated nuclear factor-E2-related factor-2 (Nrf2) to nucleus. Piperine activated the c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK) pathways, and the JNK pathway played an important role in piperine-induced HO-1 expression. Piperine protected the cells against cisplatin-induced apoptosis. The protective effect of piperine was abrogated by zinc protoporphyrin IX, an HO inhibitor, and antisense oligodeoxynucleotides against HO-1 gene. These results demonstrate that the expression of HO-1 by piperine is mediated by both JNK pathway and Nrf2, and the expression inhibits cisplatin-induced apoptosis in HEI-OC1 cells.  相似文献   

18.
The rat nematode lungworm Angiostrongylus cantonensis undergoes obligatory intracerebral migration in its hosts and causes eosinophilic meningitis or meningoencephalitis. Heme oxygenase 1 (HO-1) has several cytoprotective properties such as anti-oxidative, anti-inflammatory, and anti-apoptotic effects. HO-1 in brain tissues was induced in A. cantonensis-infected group and showed positive modulation in cobalt protoporphyrin (CoPP)-treated groups. Assay methods for the therapeutic effect include western blot analysis, enzyme-linked immunosorbent assay, gelatin zymography, blood–brain barrier permeability evaluation and eosinophil count in cerebrospinal fluid. The combination of albendazole (ABZ) and CoPP significantly decreased pro-inflammatory cytokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-5, and IL-33 but significantly increased anti-inflammatory cytokines IL-10 and transforming growth factor-β. In addition, worm recovery, matrix metalloproteinase-9, BBB permeability, and eosinophil counts were decreased in the ABZ and CoPP co-treated groups. Induction of HO-1 with CoPP strongly inhibited the protein levels of caspase-3 and increased the induction of annexin-V and B-cell leukemia 2. Thus, co-treatment with ABZ and CoPP prevented A. cantonensis-induced eosinophilic meningoencephalitis and its anti-apoptotic effect by promoting HO-1 signaling prior to BBB dysfunction. HO-1 induction might be a therapeutic modality for eosinophilic meningoencephalitis.  相似文献   

19.
Hyperglycaemia is associated with oxidative stress. The inducible isoform of heme oxygenase (HO-1) is an effective system to counteract oxidative stress, yet it is unclear how hyperglycaemia affects HO-1. In this study, we explored: 1) the HO-1 protein content and HO activity in human umbilical vein endothelial cells (HUVECs) exposed to different glucose concentrations, and 2) the mechanisms which account for the high glucose-induced effects on HO-1. We evaluated HO-1 protein expression, HO activity, apoptosis and reactive oxygen species (ROS) in HUVECs treated for 48 h with 5.5, 10 and 20 mM glucose. A dose-dependent production of reactive oxygen species was observed. At 10 mM glucose, an increase of HO-1 protein expression and HO activity was observed, whereas at 20 mM, there was no change in protein content and activity relative to at 5.5 mM glucose. HO-1 protein expression in HUVECs exposed to 20 mM of glucose was increased in the presence of 20 U/ml superoxide dismutase (SOD). HO-1 gene silencing augments ROS production both at 5.5 and 10 mM glucose, leading to an increased apoptosis. We conclude that, in endothelial cells, the regulation of HO-1 by glucose is dependent upon levels of glucose itself. Lack of homeostatic HO-1 upregulation fails to protect from oxidative damage and results in a higher rate of apoptotic cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号